Mini-Magnetospheric Plasma Propulsion (M2P2):

for

High Speed Interplanetary and Heliospheric Missions

R. M. Winglee

Geophysics Program, Univ. of Washington

J. Slough, T. Ziemba, P. Euripides

Aeronautics and Astronautics, Univ. Of Washington

Mini-Magnetospheric Plasma Propulsion (M2P2)

- Facilitate High Speed Spacecraft

 For the Exploration of the Solar System and Beyond
- Use the Solar Wind as a Free Energy Source Greatly reduce the Energy and Fuel Requirements -> Cheaper, Faster and More Diverse Missions
- Enabling Technology Exists Today to attain 50-80 km/s in 3 month accel. period
- Immediate Return to NASA Missions
 - Interstellar Probe Precusor race Voyager 1 out of the Solar System
 - Planetary Missions: Mars, Jupiter

Proposed NASA Missions: Sample Return

Needed: Fast Propulsion

Radiation Shielding

Mars

(<1000 day)

The Moon (<100 day)

Formation of a Magnetic Wall

 $1 R_{E} = 6371 \text{ km}$

Earth

and its

Magnetosphere

 $1 R_{\rm M} = 3393 \text{ km}$

Mars

and its

Magnetosphere

 $1 R_{E} = 71,600 \text{ km}$

Jupiter

and its

Magnetosphere

Solar Activity:

Corona Mass Ejections

Example of MagneticInflation in Nature

Creating A Mini-Magnetosphere

Magnetic Field + Plasma Injection = Strong Solar Wind Coupling

Dipole: $\mathbf{B} \sim \mathbf{R}^{-3}$

Current Sheet: B ~ R⁻¹

Magnetic Wall for Large Scale Radiation Shielding

Isosurface of Magnetic Field Intensity

M2P2 Milestones:

- **✓** Prove Feasibility through Computer Simulations (Phase 1)
- ➤ Generation of *High Density*, *Strongly Magnetized Plasma*
 - >10¹¹ cm⁻³ plasma density
 - > 300 G magnetic field
 - < 1 kW of Power
 - ~ 0.25 to 1 kg/day fuel consumption
- **▶** Demonstrate *Inflation* of Magnetic Field
- **▶** Test Performance of *Different Propellants*
- Demonstrate *Deflection* and *Thrust* from a Plasma Wind

M2P2 Capabilities

- Mini-Magnetosphere (Single Unit): 20-30 km Radius
 Inflation is Purely Electromagnetic
 No Large Mechanical Struts have to be deployed
- Intercept
 - ~ 1-3 N of Solar Wind Force
 - ~ 0.6 MW of Solar Wind Energy
- Scientific Payload of 100 to 20 kg would attain
 50-80 km/s in 3 month acceleration period
- **Economies of Scale for Multiple Units**

Inside the M2P2:

 $\sim 10^{11}$ cm⁻³, few eV

~ 400 G

Plasma Limiter

> Quartz Tube

Propellant

Helicon Antenna ionizes gas

Magnetic Field Coils

Ionized gas inflates magnetic field

Magnetic Field Lines

Experimental Arrangement

400 Liter Vacuum Chamber

Propellant Bottle

RF Amplifier

Power Supply

Experimental Arrangement Top View

RF plasma source

Dipole magnets

Gas feed tube

400 liter vacuum chamber

Helical single turn coil 5cm OD (Copper braid)

Helium: 40 mTorr, No magnetic Field

Center gas feed

Quartz encasement

Laboratory Helicon Antenna Design

Argon: 350 G, 250 msec exposure, 200 W input

✓ Plasma Production: $\sim 10^{12}$ cm⁻³

Argon: 500 G 2 mTorr, 280 W, 250 msec duration – frames from an mpeg movie

✓ Motion of Field Lines

Nitrogen: 0.5 mTorr, 350 G, 1200 ms, 500 W

Helium: 4.0 mTorr, 350 G, 1200 ms, 500 W

✓ M2P2 has flexibility in propellant to be used

Mini-Magnetospheric Plasma Propulsion

New Approach for Rapid Exploration of the Solar System

Description

- Create a magnetic bubble around and attached to a spacecraft that will then be carried by the solar wind.
- Low energy plasma is used to inflate the magnetic field to produce a large cross-section (15-30 km) requiring about
 3-9 mN of force, 1 kilowatt of power and 0.25 1.0 kg/day

- M2P2 Low-Cost Advanced Propulsion
 - Intercept 1-3 N of force
 - 0.6 MW of solar wind power
 - Accelerate a spacecraft of 100-200 kg to 50-80 km/s with an acceleration period of about 3 months using only about 15 to 30 kg of propellant.
- Economies of Scale with Multiple Units
 - Reduction of Surface to Volume Ratio
 - Lead to smaller losses of plasma from the mini-magnetosphere
- M2P2 Magnetic Radiation Shield
 - At a radius of few 100 km reflect MeV and possibly GeV cosmic rays
 - Ideally suited for Human Exploration

Mini-Magnetospheric Plasma Propulsion

Technology Readiness Level and Potential Applications

Variety of Propellants Possible

- -Argon or Helium (for lab use)
- -Liquid Hydrogen
- -Water refueling in space
- -Waste Products : CO₂, NH₃

Working Lab. Prototype

- Small Facility at Univ. of Washington
- Preparing for a Large Tank Test at NASA-Marshall

Potential Applications: Interstellar Precusor Mission

- LEO De-orbiting
- Geosynchronous Station Keeping
- Geosynchronous to Escape Velocity
- High Speed Planetary Orbit Transfers
- Magnetospheric/Solar Wind Braking

