Large Telescope Using Holographically-Corrected Membrane Mirror

NASA Institute for Advanced Concepts

Large Telescope Using a Holographically-Corrected Membrane Mirror

(LTHM)

Arthur L. Palisoc
L’Garde, Inc.
Tustin, California
June 6 - 7, 2000
Large Telescope Using Holographically-Corrected Membrane Mirror

Objective of the LTHM Program:

To demonstrate the feasibility and address the system issues of a holographically-corrected large aperture membrane telescope in the optical wavelengths.
Large Telescope Using Holographically-Corrected Membrane Mirror

Inflatable Antenna Experiment
Large Telescope Using Holographically-Corrected Membrane Mirror

Membrane Mirrors

3 m diameter HAIR reflector (on-axis)

1/5th sector of the IAE reflector (off-axis)
Large Telescope Using Holographically-Corrected Membrane Mirror
State of the Art Surface Precision

Inflatable Antenna Experiment (IAE)

D=50 ft (offset), F/D=1
As-built rms: 1.5 mm RMS
RMS: center 11 meters

9.8 ft IAE Sector

D=9.8 ft, F/D=1
As-built rms: 0.6 mm RMS

IRD Inflatable Reflector

D=23 ft, F/D=1/2
As-built rms: 1.2 mm RMS

LIS Inflatable Reflector

D=9.8 ft, F/D=1/2
As-built rms: 0.86 mm RMS
Holographic Correction

(a) Recording: collimated light illuminates the aberrated primary to form the object beam. The hologram is written with a reference beam incident at an angle.

(b) Reconstruction: starlight (distant object) produces a reconstructed beam, which is focused to produce an unaberrated image.
Large Telescope Using Holographically-Corrected Membrane Mirror

Holographic Correction

Focal spot images: (a) Before correction (actual size). (b) After correction (magnified 450X).
Large Telescope Using Holographically-Corrected Membrane Mirror

Holographic Correction

1951 USAF resolution chart before and after holographic correction.
Large Telescope Using Holographically-Corrected Membrane Mirror

Simulation using a 100m diameter Holographically-Corrected Telescope

Europa as viewed by the Hubble Space Telescope

Europa as viewed by a 100 m Holographically-Corrected Telescope
Large Telescope Using Holographically-Corrected Membrane Mirror

Test Facilities

L’Garde, Inc., Tustin, California
- Analysis, design, & fabrication of membrane mirror
- Membrane materials testing
- Surface profile measurement of membrane mirror

USAF Academy, Colorado Springs
- Holographic tests and correction of membrane mirror
Large Telescope Using Holographically-Corrected Membrane Mirror

Membrane Mirror Configurations

Inflatable Net-Membrane
Non-inflated Net-Membrane Configuration
Non-inflated Net-less Configuration
Large Telescope Using Holographically-Corrected Membrane Mirror

Membrane Mirror Configurations
Non-inflated Net-Membrane

Use conical configuration to further reduce weight
Large Telescope Using Holographically-Corrected Membrane Mirror

The Net-Less Membrane Mirror
Membrane Mirror Configurations

<table>
<thead>
<tr>
<th>Purely Inflatable</th>
<th>Net-Membrane</th>
<th>Net-Less Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothest surface</td>
<td>Nearly flat triangular facets</td>
<td>Cusps at tab locations</td>
</tr>
<tr>
<td>Highest surface accuracy</td>
<td>Moderate surface accuracy</td>
<td>Moderate surface accuracy</td>
</tr>
<tr>
<td>Canopy obscures signal</td>
<td>No canopy needed</td>
<td>No canopy needed</td>
</tr>
<tr>
<td>Needs makeup gas</td>
<td>No makeup gas needed</td>
<td>No makeup gas needed</td>
</tr>
<tr>
<td>Simplest to manufacture</td>
<td>More labor intensive</td>
<td>Simpler than net-membrane</td>
</tr>
<tr>
<td>Packageable into the smallest volume</td>
<td>Packageable into a small volume.</td>
<td>Packaging volume is smaller than that of Net-membrane but larger than that of purely inflatable</td>
</tr>
</tbody>
</table>
Large Telescope Using Holographically-Corrected Membrane Mirror

Finite Element Simulation of Net-Less Membrane Mirror

Predicted Surface Accuracy: $\varepsilon = 0.25$ mm RMS
Phase I Tasks

• Conceptual design of a compact, space-based membrane telescope that incorporates a real-time holographic correction.

• Build on the work for the NRO where we will prove the holographic correction of a 1 m diameter membrane telescope.

• Analytically characterize the net-membrane and net-less membrane concepts – sensitivity analyses.

• Investigate the production of holograms in real-time and at several wavelengths \textit{in-situ}; e.g. use of photopolymers.

• Compare performance relative to each other: \textit{inflatable} v.s. \textit{net-membrane} v.s. \textit{net-less membrane} configuration.

• Identify and address the system issues.

• Chart a roadmap to an orbiting 10 m diameter imaging telescope using holographically-corrected membrane mirrors.
Large Telescope Using Holographically-Corrected Membrane Mirror

System Issues

• Real-Time Holographic Correction
• Bandwidth
• Wideband holographic correction
• Holographic materials
 ➢ photopolymers
 ➢ FBAG
 ➢ OASLM
• Laser beacon source – “fixed” versus trailing
• Single hologram recorded at multiple wavelengths
• CTE and creep of membrane material – PBO has extremely low CTE.
• Space environment resistance
Large Telescope Using Holographically-Corrected Membrane Mirror

Phase II Plans

• Build a 1m diameter membrane telescope with holographic correction in-situ.

• Carry out a full static and dynamic analysis of the concept selected for a 10 m diameter.

• Continue to investigate Real-Time holographic materials – suitability of photopolymers as a holographic medium in a space environment.

• Investigate the possibility of using a distant laser source in space – “trailing” or fixed at the ISS for example.

• Feasibility of a simple, secondary adaptive optics system.

• Modularizing and shielding of the telescope for optimum performance.