

Mars Atmosphere Resource Recovery System

MARRS

Presentation to
NASA Institute for Advanced Concepts
2nd Annual Meeting
June 6-7, 2000

Christopher England

tel: 626.355.1209 fax: 626.355.1209 cengland@earthlink.net

ERG

Engineering Research Group the chemical and mechanical engineering sciences

Making Oxygen from Martian Air

Mostly CO₂ with oxygen, CO and water as trace components!

Ref: qust.arc.nasa.gov/mars/background

Composition (Viking Data)

Component	% by vol			
CO2	95.32			
Nitrogen	2.7			
Argon	1.6			
Oxygen	0.13			
CO	0.07			
Water	0.03			
Neon	0.00025			
Krypton	0.00003			
Xenon	0.000008			
Ozone	0.00003			
Missing	0.149709			
	100			

Electrolysis of CO₂

- Compression of CO₂ followed by electrolysis yields CO and O₂
- Experiment on Mars 2001 lander -- MAAC* & MIPS*

YSZ electrolyte (yttria-stabilized zirconia)

Martian Atmosphere is 0.13% O₂

0.0006% oxygen in the ocean

Does the fish electrolyze water to get oxygen?

Ref: Deep-Sea Research, Vol.17, pp 721-735

How can we best use the Martian atmosphere?

MARRS* - A New Process For Recovering Oxygen and Water on Mars

- 1. Compress the atmosphere,
- 2. Condense the carbon dioxide,
- 3. Separate the carbon dioxide from the permanent gases,
- 4. Concentrate and use the resulting oxygen, water, CO, N2 and Ar

*U.S. Patent pending

Compression Energy

- Mars has an atmosphere that is easily condensable
 - unlike the Earth.
- The energy to liquefy the CO₂ is unexpectedly low
 - even better with good energy recovery

- The temperatureentropy diagram provides key data
- The chemical engineering says "no solids please."
- Compress to pressure above the triple point.

The Permanent Gases Will Separate!

 Apply Raoult's Law + Clausius-Clapeyron equation to estimate distribution of gases

$$X = Y P_T/P_S$$

In $X = In [Y P] - [H_V/R] [1/T_B-1/T]$

- After condensation, oxygen is concentrated 27-fold.
 - A surprising result much better than expected
 - Product gas is still mostly CO₂

SP-100 Reactor Supplies the Energy

- 30 liters
- 300 kg
- System mass of 2200 kg.

 Adapt temperatures and materials for the Martian atmosphere

MARRS Product Manifest

MARRS Product Manifest: Basis: SP-100 Space Reactor, 40% Compression Efficiency								
Kilograms produced from one 5 MW thermal source, per hour								
	L CO2	02	N2	Ar	CO	H2O		
Energy								
Recovery, %								
0	22172.6	22.0	799.4	676.6	20.8	5.8		
20	0	27.5	999.3	845.8	26.0	7.3		
40	0	45.8	1665.4	1409.6	43.3	12.1		
60	0	114.6	4163.5	3524.0	108.3	30.2		
80	0	572.9	20817.7	17619.8	541.7	151.0		

An Integrated Resource Architecture

- MARRS provides products --
 - Oxygen
 - Water
 - Nitrogen and argon, components of air
 - Carbon monoxide, a fuel precursor
 - Mechanical and electrical power

- Liquid CO₂ in very large amounts
- For drilling and other stationary machinery
- For local transportation
 - with transportable heat source

Functional Elements of Making Air on Mars All it takes is energy, equipment, and knowledge

Equipment Dimensions

Primary Separation Vessel

MARRS vs. Electrolysis

Mass Comparison for Oxygen Production (Roughest Estimate)								
	MARRS		Electrolysis					
	SP-100	PV	SP-100	PV				
Mass (kg/kg O ₂ /day)	2 to 4	?	8 to 16	300-1200				
Energy (kw/kg O ₂ /day)	10 to 40		10 to 20					
Co-products	carbon monoxide		carbon monoxide					
	wa	ter						
	nitro	ogen						
	arg	gon						
	(inert (gases)						

- Continuous extraction process benefits from economies of scale
- Electrolysis attractive for small systems

MARRS Research for NIAC

- Focus on processing of the atmospheric gases
 - The chemical engineering
- Provide a good estimate of how much compression is needed
- Make first estimate of launch mass
- Outline architecture and compression strategy
 - A good architecture makes
 MARRS a "pull" technology
 - It must accommodate dramatic environmental variability.

The Martian Dead State

- The "dead state" is a term for the ground state that determines efficiency
- Second law process analysis tells where the inefficiencies occur
- For large in-situ installations, high efficiency is a primary design goal

Energy ~ 1/η
Mass ~ 1/η

MARRS chemical engineering will include process design with second law optimization.

MARRS -- An Enabling Technology

- Uniquely uses the Martian environment
- Helps define new disciplines in space technology
 - Planetary chemical engineering
- Many MARRS concepts applicable to other planetary bodies

- **NIAC** provides a unique opportunity to introduce MARRS and other unique ideas into NASA's advanced planning
- Planetary chemical engineering will be introduced to the AIChE in November