ADVANCED SYSTEM CONCEPT FOR TOTAL ISRU-BASED PROPULSION AND POWER SYSTEMS FOR UNMANNED AND MANNED MARS EXPLORATION

> Third Annual NIAC Meeting Visions of the Future in Aeronautics and Space NASA/ARC

> > 5-6 June 2001 Research Contract 07600-041 (under Prime Contract NAS5-98051) OTC-GS-0096-P-01-1 Prepared for:



Universities Space Research Association (USRA) Presented by Dr. Eric E. Rice, President/CEO



ORBITAL TECHNOLOGIES CORPORATION Space Center, 1212 Fourier Drive Madison, Wisconsin 53717 608-827-5000 www.orbitec.com





## ACKNOWLEDGEMENT OF KEY STUDY PARTICIPANTS



Contract 07600-41/GS-0096 6/1/2001

#### **ORBITEC**

- Eric Rice
- Robert Gustafson
- Dan Gramer
- Ron Teeter
- Brant White
- Pete Priest
- Doug O'Handley
- Jerry Hanley

#### NIAC/NASA

- Robert Cassanova (NIAC)
- Jeff Antol (LaRC)
- Mike O'Neal (KSC)
- Jerry Sanders

- Bill Knuth
- Marty Chiaverini
- Bob Morrow
- TD Lin

(JSC)

- Jim Jordan
- Matt Malecki
- Marty Harms
- Richard Gertsch
- Leslie Gertsch







- Purpose and Background
- Advanced Concept Description
- Overall Study Approach
- Study Requirements & Ground Rules
- Propellant/Propulsion Scenarios
- Bases, Missions and Traffic Models
- Vehicle Systems Definitions
- Cost Models/Cost-Benefit Analysis
- Preliminary Results and Conclusions to Date



# PURPOSE AND BACKGROUND

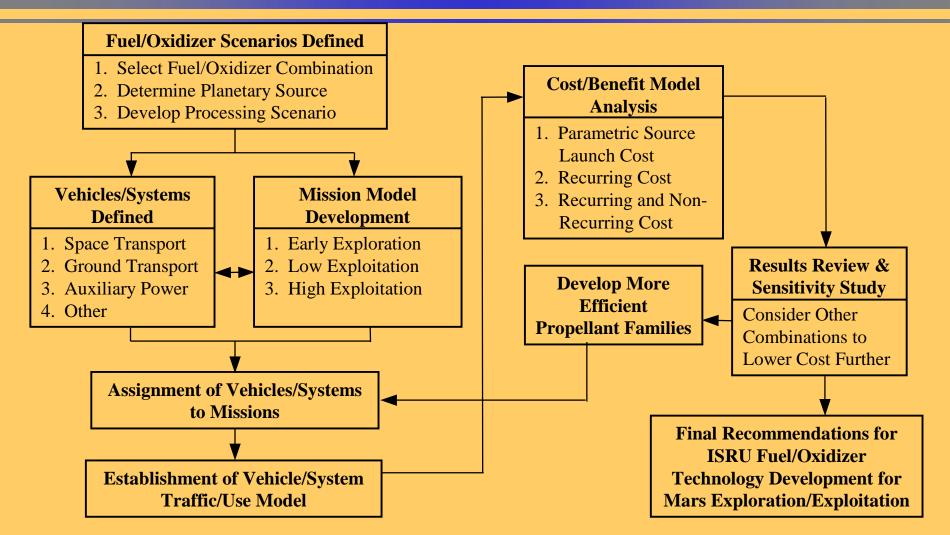


- Purpose: enable cost-effective, *in situ* production and uses of Mars derived oxidizers and fuels and to guide advanced concept development, system analysis efforts, and technology and unique hardware developments
- Promise: Mars-produced fuels and oxidizers will enhance and enable Mars exploration/exploitation missions by providing a very cost-effective propellant supply
- Most cost-effective Martian resource is the atmosphere (95% CO<sub>2</sub>); however, Mars soil can also provide other ISRU species (Mg, Al, H<sub>2</sub>O, etc.)
- Atmospheric CO<sub>2</sub> can be easily processed and converted to CO, C and O<sub>2</sub>
- Small amount of Atmospheric H<sub>2</sub>O can be converted to H<sub>2</sub> & O<sub>2</sub>, and N<sub>2</sub> and Ar are also available from the atmosphere -- making many propellant combinations possible
- Implementation of this architecture will also greatly support logistics & base operations by providing a reliable and simple way to store solar or nuclear generated energy



# ADVANCED CONCEPT SUMMARY




6/1/2001

- It is believed that by using the baseline C/O system, in the proper fuel form (CO solid; C solid) that significant economic dividends are possible for future Mars base activity if Mars water is not readily available
- The production of O and CO through solid state electrolysis appears to be well in hand by UA
- ORBITEC has demonstrated successful hot firings of advanced cryogenic solid hybrid rocket engines, including: solid CO, solid H<sub>2</sub>, solid O<sub>2</sub>, solid CH<sub>4</sub>, and solid C<sub>2</sub>H<sub>2</sub> tested solid C, solid C<sub>2</sub>H<sub>4</sub>, solid C<sub>6</sub>H<sub>6</sub>
- CO gas directly frozen to a solid hybrid fuel grain below 68 K using sub-cooled LOX
- Focus on innovative and revolutionary use of <u>solid</u> CO and C as fuels with LOX in hybrid rockets and power system applications, but have broadened scope to include: SC/LOX, SCO/LOX, LCO/LOX, SCH<sub>4</sub>/LOX, LCH<sub>4</sub>/LOX, SC<sub>2</sub>H<sub>2</sub>/LOX, LC<sub>2</sub>H<sub>4</sub>/LOX, SC<sub>2</sub>H<sub>4</sub>/LOX, SC<sub>2</sub>H<sub>4</sub>/LOX, LH<sub>2</sub>/SOX, LH<sub>2</sub>/LOX



# OVERALL STUDY APPROACH







# **STUDY REQUIREMENTS AND GROUND RULES**



- Study purpose is to assess cost-effective, in-situ production and use of Mars-derived oxidizers and fuels to guide advanced concept development, system analysis efforts, and technology and unique hardware developments
- Study time frame includes the early manned exploration period (2020-2040) and extends 50 years from the "end" of the initial human Mars exploration activity
- Missions to be used are those defined by the project team
- Earth launch mass (ELM) to Mars orbit costs will be parametrically assessed at \$5,000/kg (baseline) and \$10,000/kg and \$1,000/kg
- Human activity models assumed for the end of the 50-year period of assessment to be 10,000 humans for high and 100 humans for low
- Mission vehicle assignment and mission frequency will be determined by the project team
- All cost estimates will be in year 2000 dollars
- Ground vehicles are to include: automated unmanned roving vehicles, personal vehicles, two-person unpressurized rovers, manned pressurized transport rovers, and larger cargo transports
- Flight vehicles are to include: Mars sample return vehicles, unmanned and manned surface-to-surface "ballistic hoppers", surface-to-orbit vehicles, interplanetary transport vehicles, powered balloons, winged aerocraft, single person rocket backpacks, and single person rocket platforms
- Auxiliary power systems are to include: Brayton turbines and fuel cells for small Mars outposts
- Only propellants to be considered are those derivable from Earth (Earth deliveries), Mars resources, or water/hydrogen resources from the Moon
- Other lower-level requirements and ground rules are defined in each task





## PROPELLANT/PROPULSION SCENARIOS



- Flight Vehicles
- Ground Vehicles
- Propellant Families and Sources



#### DEFINITION OF PROPELLENT/ PROPULSION SCENARIOS TO BE CONSIDERED/ANALYZED (FOR FLIGHT VEHICLES)



- 1. LH<sub>2</sub>/LOX bi-propellant liquid propulsion
- 2. LH<sub>2</sub>/SOX cryogenic solid hybrid propulsion
- **3. SC/LOX vortex hybrid propulsion**
- 4. LCO/LOX bi-propellant liquid propulsion
- 5. SCO/LOX cryogenic solid hybrid propulsion
- 6. SC<sub>2</sub>H<sub>2</sub>/LOX cryogenic solid hybrid propulsion
- 7. LC<sub>2</sub>H<sub>4</sub>/LOX bi-propellant liquid propulsion
- 8. SC<sub>2</sub>H<sub>4</sub>/LOX cryogenic solid hybrid propulsion
- 9. LCH<sub>4</sub>/LOX bi-propellant liquid propulsion
- **10. SCH<sub>4</sub>/LOX cryogenic solid hybrid propulsion**



DEFINITION OF PROPELLENT/ PROPULSION SCENARIOS TO BE CONSIDERED/ANALYZED (FOR GROUND VEHICLES)



Contract 07600-41/GS-0096 6/1/2001

1. LH<sub>2</sub>/LOX fuel cells
 2. LH<sub>2</sub>O<sub>2</sub> fuel cells
 3. LCH<sub>3</sub>OH/LH<sub>2</sub>O<sub>2</sub> fuel cell/turbine
 4. LCO/LOX fuel cell/turbine
 5. LCH<sub>4</sub>/LOX fuel cell/turbine



### PROPELLANT FAMILIES AND SOURCES TO BE CONSIDERED/ANALYZED



Contract 07600-41/GS-0096 6/1/2001

#### <u>H<sub>2</sub>/O<sub>2</sub> or H<sub>2</sub>O<sub>2</sub></u>

All Earth or Moon-Supplied H<sub>2</sub> and O<sub>2</sub> (PF1)

Earth or Moon-Supplied H<sub>2</sub>; O<sub>2</sub> from the Mars Atmospheric CO<sub>2</sub> (PF2)

All Mars Water-Supplied H<sub>2</sub> and O<sub>2</sub> (PF3)

#### <u>C/O\_2</u>

Earth-Supplied C; O<sub>2</sub> from Mars Atmospheric CO<sub>2</sub> (PF4)

C and O<sub>2</sub> Made from the Mars Atmospheric CO<sub>2</sub> (PF5)

#### <u>CO/O</u><sub>2</sub>

CO and O<sub>2</sub> Made from the Mars Atmospheric CO<sub>2</sub> (PF6)

#### $\underline{\mathbf{C}_{2}\mathbf{H}_{2}}/\underline{\mathbf{O}_{2}}$

C<sub>2</sub>H<sub>2</sub> Made from Earth or Moon-Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF7)

C<sub>2</sub>H<sub>2</sub> Made from Mars-Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF8)

#### $\underline{\mathbf{C}}_{\underline{2}}\underline{\mathbf{H}}_{\underline{4}}/\underline{\mathbf{O}}_{\underline{2}}$

C<sub>2</sub>H<sub>4</sub> Made from Earth or Moon-Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF9) C<sub>2</sub>H<sub>4</sub> Made from Mars Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF10)



### PROPELLANT FAMILIES AND SOURCES TO BE CONSIDERED/ANALYZED (cont.)





Contract 07600-41/GS-0096 6/1/2001

#### $\underline{CH_4/O_2}$

CH<sub>4</sub> Made from Earth or Moon-Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF11)

CH<sub>4</sub> Made from Mars-Supplied Water; Mars C and O<sub>2</sub> from Mars Atmosphere; Mars O<sub>2</sub> from Mars Water (PF12)

#### CH<sub>3</sub>OH/O<sub>2</sub>

CH<sub>3</sub>OH Made from Earth or Moon-Supplied H<sub>2</sub>; Mars C and O<sub>2</sub> from Mars Atmosphere (PF13)

CH<sub>3</sub>OH Made from Mars-Supplied Water; Mars C and O<sub>2</sub> from Mars Atmosphere; Mars O<sub>2</sub> from Mars Water (PF14)

#### CH<sub>3</sub>OH/H<sub>2</sub>O<sub>2</sub>

CH<sub>3</sub>OH Made from Earth or Moon-Supplied H<sub>2</sub>; C and O<sub>2</sub> from Mars Atmosphere; H<sub>2</sub>O<sub>2</sub> from Earth or Moon-Supplied H<sub>2</sub> and Mars O<sub>2</sub> from Mars Atmosphere (PF15)

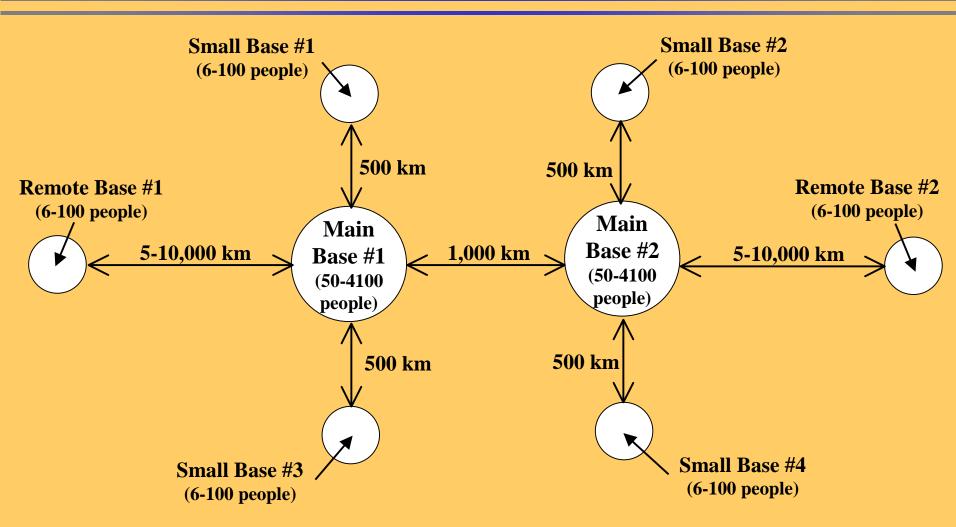
CH<sub>3</sub>OH Made from Mars-Supplied Water, C and O<sub>2</sub> from Mars Atmosphere; H<sub>2</sub>O<sub>2</sub> from Mars Water (PF16)







6/1/2001


BASES, MISSIONS AND TRAFFIC MODELS

- Location of Mars bases
- Population growth models
- Mission Identification and definition
- Mission models
- Assignment of vehicles to missions
- Traffic models
- Infrastructure models



### LOCATION OF MARS BASES







# POPULATION GROWTH MODEL ASSUMPTIONS



- A colony cycle is defined to correspond to each launch window (~26 months) and all transports of people to/from Earth occur once during each colony cycle
- Starting population of 20 in 2040 with linear growth to 100 in 2050
- Linear population growth to 10,000 in 2090 (high scenario) or stable population at 100 (low scenario)
- No permanent inhabitants between 2040 and 2050
- After 2050, 50% of the colonists from Earth are transient and the other 50% are permanent (high scenario)
- Transient population lives on Mars in 70-72 month intervals
- 2% per year net increase in the permanent population due to the results of births and deaths of the permanent colonists







Contract 07600-41/GS-0096 6/1/2001

### **POPULATION GROWTH MODEL (HIGH SCENARIO)**

| Colony | Veere   | Mars Su   | urface Pop | oulation | Births - | Trans   | portation | Surface to         |
|--------|---------|-----------|------------|----------|----------|---------|-----------|--------------------|
| Cycle  | Years   | Transient | Perm.      | Total    | Deaths   | To Mars | To Earth  | <b>Orbit Trips</b> |
| 0      | <2040   | 20        | 0          | 20       | 0        | 20      | 0         | 1                  |
| 1      | 2040-42 | 36        | 0          | 36       | 0        | 16      | 0         | 1                  |
| 2      | 2042-44 | 52        | 0          | 52       | 0        | 16      | 0         | 1                  |
| 3      | 2044-46 | 68        | 0          | 68       | 0        | 36      | 20        | 1                  |
| 4      | 2046-48 | 84        | 0          | 84       | 0        | 32      | 16        | 1                  |
| 5      | 2048-50 | 50        | 50         | 100      | 0        | 32      | 16        | 1                  |
| 6      | 2050-53 | 325       | 325        | 650      | 2        | 564     | 16        | 8                  |
| 7      | 2053-55 | 600       | 600        | 1200     | 13       | 573     | 36        | 8                  |
| 8      | 2055-57 | 875       | 875        | 1750     | 24       | 558     | 32        | 7                  |
| 9      | 2057-59 | 1150      | 1150       | 2300     | 35       | 806     | 291       | 11                 |
| 10     | 2059-61 | 1425      | 1425       | 2850     | 46       | 795     | 291       | 10                 |
| 11     | 2061-63 | 1700      | 1700       | 3400     | 57       | 804     | 311       | 11                 |
| 12     | 2063-66 | 1975      | 1975       | 3950     | 68       | 789     | 307       | 10                 |
| 13     | 2066-68 | 2250      | 2250       | 4500     | 79       | 1037    | 566       | 13                 |
| 14     | 2068-70 | 2525      | 2525       | 5050     | 90       | 1026    | 566       | 13                 |
| 15     | 2070-72 | 2800      | 2800       | 5600     | 101      | 1035    | 586       | 13                 |
| 16     | 2072-74 | 3075      | 3075       | 6150     | 112      | 1020    | 582       | 13                 |
| 17     | 2074-76 | 3350      | 3350       | 6700     | 123      | 1268    | 841       | 16                 |
| 18     | 2076-79 | 3625      | 3625       | 7250     | 134      | 1257    | 841       | 16                 |
| 19     | 2079-81 | 3900      | 3900       | 7800     | 145      | 1266    | 861       | 16                 |
| 20     | 2081-83 | 4175      | 4175       | 8350     | 156      | 1251    | 857       | 16                 |
| 21     | 2083-85 | 4450      | 4450       | 8900     | 167      | 1499    | 1116      | 19                 |
| 22     | 2085-87 | 4725      | 4725       | 9450     | 178      | 1488    | 1116      | 19                 |
| 23     | 2087-90 | 5000      | 5000       | 10000    | 189      | 1497    | 1136      | 19                 |





Contract 07600-41/GS-0096

6/1/2001

### **POPULATION GROWTH MODEL (LOW SCENARIO)**

| Colony | Year    | Mars       | Transpo | ortation | Surface to  |
|--------|---------|------------|---------|----------|-------------|
| Cycle  | rear    | Population | To Mars | To Earth | Orbit Trips |
| 0      | <2040   | 20         | 20      | 0        | 1           |
| 1      | 2040-42 | 36         | 16      | 0        | 1           |
| 2      | 2042-44 | 52         | 16      | 0        | 1           |
| 3      | 2044-46 | 68         | 36      | 20       | 1           |
| 4      | 2046-48 | 84         | 32      | 16       | 1           |
| 5      | 2048-50 | 100        | 32      | 16       | 1           |
| 6      | 2050-53 | 100        | 36      | 36       | 1           |
| 7      | 2053-55 | 100        | 32      | 32       | 1           |
| 8      | 2055-57 | 100        | 32      | 32       | 1           |
| 9      | 2057-59 | 100        | 36      | 36       | 1           |
| 10     | 2059-61 | 100        | 32      | 32       | 1           |
| 11     | 2061-63 | 100        | 32      | 32       | 1           |
| 12     | 2063-66 | 100        | 36      | 36       | 1           |
| 13     | 2066-68 | 100        | 32      | 32       | 1           |
| 14     | 2068-70 | 100        | 32      | 32       | 1           |
| 15     | 2070-72 | 100        | 36      | 36       | 1           |
| 16     | 2072-74 | 100        | 32      | 32       | 1           |
| 17     | 2074-76 | 100        | 32      | 32       | 1           |
| 18     | 2076-79 | 100        | 36      | 36       | 1           |
| 19     | 2079-81 | 100        | 32      | 32       | 1           |
| 20     | 2081-83 | 100        | 32      | 32       | 1           |
| 21     | 2083-85 | 100        | 36      | 36       | 1           |
| 22     | 2085-87 | 100        | 32      | 32       | 1           |
| 23     | 2087-90 | 100        | 32      | 32       | 1           |





6/1/2001

#### MARS MISSION Contract 07600-41/GS-0096 **CATEGORY IDENTIFICATION**

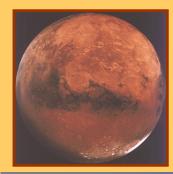
- Scientific Exploration & Research
- Commercial Exploration
- Terraforming
- Infrastructure Construction
- Agriculture/Farming
- Manufacturing/Industrial Activities
- Resource Mining
- Weather/Environmental
- Communications Navigation Services
- Surveying/Mapping
- Personal Transportation
- Package/Mail Delivery/Package Delivery/Product Delivery/Food Delivery/Goods/Services/Cargo
- Government Activity/Law Enforcement/Emergency Rescue/Response
- Launch/Space Transport/Satellite/Earth Cargo Launch/Space Transport

Auxiliary Power/Emergency Power

- Life Support
- Waste/Trash Management
- Health Care/Maintenance
- Virtual Travel Market

[Underlined missions major ISRU consumers]








6/1/2001

TERRAFORMED MARS by KANDIS ELLIOT







MIAC ~~

Contract 07600-41/GS-0096 6/1/2001

### EXAMPLE OF MISSION DEFINITION

| Mission Category:         | Commercial                                            |     |    |     |     |                   |                     |                               |             |                 |                                |                         |
|---------------------------|-------------------------------------------------------|-----|----|-----|-----|-------------------|---------------------|-------------------------------|-------------|-----------------|--------------------------------|-------------------------|
| Mission/Submission Scope? | Line Item Specifics                                   | _   | W  |     |     | # of Crew/Robotic | Mission<br>Duration | Distance<br>from Base<br>(km) | Travel Time | Payload<br>(kg) | Mission<br>Reference<br>Number | System Type<br>Required |
|                           |                                                       | 12  | 12 | 12  | 28  | 2                 | 5 days              | 5000                          | minutes     | 200             | 26                             | flight                  |
|                           | Far-ranging ballistic hopper missions to remote sites | 3   | 3  | 3   | 7   | 2                 | 10 days             | 10000                         | minutes     | 200             | 27                             | flight                  |
|                           | for sample collection, or on-site testing             | 13  | 15 | 13  | 30  | rob               | 10 days             | 5000                          | minutes     | 100             | 28                             | flight                  |
|                           |                                                       | 7   | 8  | 7   | 15  | rob               | 20 days             | 10000                         | minutes     | 100             | 29                             | flight                  |
| Resource development      | Short-range rover missions                            | 150 | 25 | 150 | 120 | 2                 | 3 days              | <500                          | hours       | 200             | 30                             | ground                  |
| Resource development      | Short-tange tover missions                            | 37  | 6  | 37  | 30  | rob               | 6 days              | <500                          | hours       | 200             | 31                             | ground                  |
|                           | Long-range robotic missions for extended              | 10  | 10 | 10  | 10  | rob               | 2 mo                | 10000                         | minutes     | 100             | 32                             | flight                  |
|                           | observation                                           | 10  | 5  | 10  | 5   | rob               | 1 mo                | 1000                          | days        | 100             | 33                             | ground                  |
|                           | nuclear powered rover*                                | 3   | 3  | 3   | 4   | rob               | infinite            | arbitrary                     | n/a         | 50              | 34                             | ground                  |
|                           | Deep drilling rig                                     | 7   | 8  | 7   | 20  | rob               | 2 mo                | 1000                          | weeks       | 3000            | 35                             | ground                  |

\*Bold italicized entries in the frequency column indicate a quantity, not a frequency (for missions of indefinite duratio





MIAC ~~

Contract 07600-41/GS-0096 6/1/2001

### DEVELOPMENT OF MARS MISSION MODEL

|                      |         |       |            |           |          |           |         |          |           |          |          |          |          |         |        |          |           |        |         |          |        | _       | _        |                    |
|----------------------|---------|-------|------------|-----------|----------|-----------|---------|----------|-----------|----------|----------|----------|----------|---------|--------|----------|-----------|--------|---------|----------|--------|---------|----------|--------------------|
| Mission<br>Reference |         |       |            |           |          |           |         | C        | Colony    | Cycle    | one (    | cycle i  | s ~26 E  | Earth n | nonths | 5)       |           |        |         |          |        |         |          | Total<br>Number of |
| Number               | 1       | 2     | 3          | 4         | 5        | 6         | 7       | 8        | 9         | 10       | 11       | 12       | 13       | 14      | 15     | 16       | 17        | 18     | 19      | 20       | 21     | 22      | 23       | Missions           |
| 1                    | 5       | 5     | 6          | 6         | 6        | 7         | 7       | 7        | 8         | 8        | 8        | 9        | 9        | 9       | 10     | 10       | 10        | 11     | 11      | 11       | 12     | 12      | 13       | 201                |
| 2                    | 1       | 1     | 1          | 1         | 1        | 1         | 1       | 2        | 2         | 2        | 2        | 2        | 2        | 2       | 3      | 3        | 3         | 3      | 3       | 3        | 3      | 4       | 4        | 50                 |
| 3                    | 6       | 6     | 6          | 7         | 7        | 7         | 8       | 8        | 8         | 9        | 9        | 9        | 10       | 10      | 10     | 11       | 11        | 11     | 12      | 12       | 12     | 13      | 13       | 215                |
| 4                    | 3       | 3     | 3          | 3         | 3        | 3         | 4       | 4        | 4         | 4        | 4        | 5        | 5        | 5       | 5      | 5        | 6         | 6      | 6       | 6        | 6      | 6       | 7        | 110                |
| 7                    | 5       | 5     | 5          | 5         | 5        | 5         | 5       | 5        | 5         | 5        | 5        | 5        | 5        | 6       | 6      | 6        | 6         | 6      | 6       | 6        | 6      | 6       | 6        | 125                |
| 10                   | 5       | 6     | 6          | 6         | 6        | 7         | 7       | 7        | 8         | 8        | 8        | 9        | 9        | 9       | 10     | 10       | 10        | 11     | 11      | 11       | 12     | 12      | 12       | 200                |
| 11                   | 1       | 1     | 1          | 1         | 1        | 1         | 1       | 2        | 2         | 2        | 2        | 2        | 2        | 2       | 3      | 3        | 3         | 3      | 3       | 3        | 3      | 4       | 4        | 50                 |
| 12                   | 6       | 6     | 6          | 7         | 7        | 7         | 8       | 8        | 8         | 9        | 9        | 9        | 10       | 10      | 10     | 11       | 11        | 11     | 12      | 12       | 12     | 13      | 13       | 215                |
| 13                   | 3       | 3     | 3          | 3         | 3        | 3         | 4       | 4        | 4         | 4        | 4        | 5        | 5        | 5       | 5      | 5        | 6         | 6      | 6       | 6        | 6      | 6       | 7        | 106                |
| 16                   | 5       | 5     | 5          | 5         | 5        | 5         | 5       | 5        | 5         | 5        | 5        | 5        | 5        | 6       | 6      | 6        | 6         | 6      | 6       | 6        | 6      | 6       | 6        | 125                |
| 19                   | 3       | 3     | 3          | 3         | 3        | 3         | 3       | 3        | 3         | 3        | 4        | 4        | 4        | 4       | 4      | 4        | 4         | 4      | 4       | 4        | 5      | 5       | 5        | 85                 |
| 20                   | 4       | 4     | 4          | 4         | 4        | 4         | 4       | 4        | 4         | 4        | 4        | 4        | 4        | 4       | 4      | 4        | 4         | 4      | 4       | 4        | 5      | 5       | 5        | 95                 |
| 21                   | 6       | 6     | 6          | 7         | 7        | 7         | 8       | 8        | 8         | 9        | 9        | 10       | 10       | 10      | 11     | 11       | 11        | 12     | 12      | 12       | 13     | 13      | 14       | 220                |
| 22                   | 23      | 24    | 25         | 26        | 27       | 28        | 29      | 30       | 31        | 32       | 33       | 34       | 35       | 36      | 37     | 38       | 39        | 40     | 41      | 42       | 43     | 44      | 45       | 782                |
| 23                   | 87      | 91    | 95         | 99        | 103      | 107       | 111     | 115      | 119       | 123      | 127      | 131      | 135      | 139     | 143    | 147      | 151       | 155    | 159     | 163      | 167    | 170     | 174      | 3011               |
| 24                   | 2       | 2     | 2          | 2         | 2        | 2         | 2       | 2        | 2         | 2        | 2        | 2        | 2        | 2       | 3      | 3        | 3         | 3      | 3       | 3        | 3      | 3       | 3        | 55                 |
| 25                   | 1       | 1     | 1          | 1         | 1        | 1         | 1       | 1        | 1         | 1        | 1        | 1        | 1        | 1       | 1      | 1        | 2         | 2      | 2       | 2        | 2      | 2       | 2        | 30                 |
| 26                   | 5       | 5     | 6          | 6         | 6        | 7         | 7       | 7        | 8         | 8        | 8        | 9        | 9        | 9       | 10     | 10       | 10        | 11     | 11      | 11       | 12     | 12      | 13       | 200                |
| 27                   | 1       | 1     | 1          | 1         | 1        | 1         | 1       | 2        | 2         | 2        | 2        | 2        | 2        | 2       | 3      | 3        | 3         | 3      | 3       | 3        | 3      | 4       | 4        | 50                 |
| 28                   | 6       | 6     | 6          | 7         | 7        | 7         | 8       | 8        | 8         | 9        | 9        | 9        | 10       | 10      | 10     | 11       | 11        | 11     | 12      | 12       | 12     | 13      | 13       | 215                |
| 29                   | 3       | 3     | 3          | 3         | 3        | 3         | 4       | 4        | 4         | 4        | 4        | 5        | 5        | 5       | 5      | 5        | 6         | 6      | 6       | 6        | 6      | 6       | 7        | 106                |
| 32                   | 4       | 4     | 4          | 4         | 4        | 4         | 4       | 4        | 4         | 4        | 4        | 4        | 4        | 4       | 4      | 4        | 4         | 4      | 4       | 4        | 4      | 4       | 4        | 92                 |
| 36                   | 1       | 1     | 1          | 1         | 1        | 8         | 8       | 7        | 11        | 10       | 11       | 10       | 13       | 13      | 13     | 13       | 16        | 16     | 16      | 16       | 19     | 19      | 19       | 243                |
| 37                   | 0       | 0     | 0          | 0         | 0        | 0         | 0       | 0        | 0         | 0        | 0        | 0        | 0        | 0       | 0      | 0        | 0         | 0      | 0       | 0        | 0      | 0       | 0        | 0                  |
| 38                   | 0       | 0     | 0          | 0         | 0        | 0         | 0       | 0        | 0         | 0        | 0        | 0        | 0        | 0       | 0      | 0        | 0         | 0      | 0       | 0        | 0      | 0       | 0        | 0                  |
| 39!                  | 2       | 6     | 4          | 4         | 4        | 4         | 28      | 29       | 29        | 29       | 29       | 29       | 29       | 29      | 29     | 29       | 29        | 29     | 29      | 29       | 29     | 29      | 30       | 517                |
| 46                   | 0       | 1     | 2          | 3         | 4        | 5         | 6       | 7        | 8         | 9        | 10       | 11       | 12       | 13      | 14     | 15       | 16        | 17     | 18      | 19       | 20     | 21      | 22       | 253                |
| 47                   | 0       | 1     | 2          | 3         | 4        | 5         | 6       | 7        | 8         | 9        | 10       | 11       | 12       | 13      | 14     | 15       | 16        | 17     | 18      | 19       | 20     | 21      | 22       | 253                |
| 48                   | 0       | 0     | 0          | 1         | 1        | 1         | 1       | 1        | 2         | 2        | 2        | 2        | 2        | 3       | 3      | 3        | 3         | 3      | 4       | 4        | 4      | 4       | 4        | 50                 |
| 49                   | 0       | 1     | 2          | 3         | 4        | 5         | 6       | 7        | 8         | 9        | 10       | 11       | 12       | 13      | 14     | 15       | 16        | 17     | 18      | 19       | 20     | 21      | 22       | 253                |
| 50*                  | 1       | 1     | 1          | 2         | 2        | 3         | 3       | 3        | 4         | 4        | 4        | 5        | 5        | 5       | 6      | 6        | 6         | 7      | 7       | 8        | 8      | 9       | 9        | 109                |
| 52*                  | 1       | 1     | 1          | 2         | 2        | 2         | 3       | 3        | 3         | 4        | 4        | 5        | 5        | 5       | 6      | 6        | 6         | 7      | 7       | 7        | 8      | 8       | 8        | 104                |
| Mission Re           | ference | Numbe | r in itali | ics indic | ates rou | ınd trip. | ! Indio | cates th | at the tr | affic me | odel for | this mis | ssion is | depend  | ent on | the prop | bellant i | usedin | the veh | icle (nu | mbersf | or meth | nane lis | ted).              |





6/1/2.001

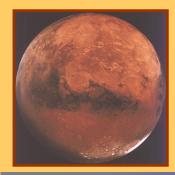
\* = Total value is for a round trip

### FLIGHT VEHICLE ASSIGNMENT TO MISSIONS

- All of the flight vehicle missions requirements were compared to determine several general vehicle types
- After analyzing the current flight vehicle missions, six generic vehicle types were identified
- The requirements for these vehicle types are highlighted in green
- Missions in red were not included in this analysis

| Mission<br>Reference<br>Number | Vehicle<br>Type | # of Crew/<br>Robotic | Mission<br>Duration<br>(days) | Distance<br>from Base<br>(km) | Travel<br>Time | Payload<br>(kg)     | Equivalent<br>Payload<br>(kg) | Delta V<br>(m/sec) |
|--------------------------------|-----------------|-----------------------|-------------------------------|-------------------------------|----------------|---------------------|-------------------------------|--------------------|
| 3                              | V3              | rob                   | 60                            | 5,000                         | minutes        | 100                 | 100                           | 7,548*             |
| 28                             | V3              | rob                   | 60                            | 5,000                         | minutes        | 100                 | 100                           | 7,548*             |
| 12                             | V3              | rob                   | 60                            | 5,000                         | minutes        | 300                 | 300                           | 7,548*             |
| 1                              | V4              | 2                     | 20                            | 5,000                         | minutes        | 100                 | 5,905                         | 7,548*             |
| 26                             | V4              | 2                     | 20                            | 5,000                         | minutes        | 200                 | 6,005                         | 7,548*             |
| 10                             | V4              | 2                     | 20                            | 5,000                         | minutes        | 300                 | 6,105                         | 7,548*             |
| 46                             | V1              | 2                     | 1                             | 5,000                         | minutes        | 20 people           | 9,203                         | 3,774              |
| 47                             | V1              | 2                     | 1                             | 5,000                         | minutes        | 4,000               | 5,421                         | 3,774              |
| 52                             | V1              | 3                     | 7                             | 5,000                         | minutes        | 1 person +<br>50    | 6,530                         | 3,774              |
| 48                             | V1              | 3                     | 1                             | 5,000                         | minutes        | 2 people            | 2,865                         | 3,774              |
| 49                             | V1              | 3                     | 1                             | 5,000                         | minutes        | 2 people            | 2,865                         | 3,774              |
| 50                             | V4              | 3                     | 1                             | 5,000                         | minutes        | 2 people + 100      | 2,965                         | 7,548*             |
| 19                             | V2              | rob                   | 1                             | 10,000                        | minutes        | 10                  | 10                            | 4,189              |
| 4                              | V3              | rob                   | 60                            | 10,000                        | minutes        | 100                 | 100                           | 8,378*             |
| 29                             | V3              | rob                   | 60                            | 10,000                        | minutes        | 100                 | 100                           | 8,378*             |
| 7                              | V3              | rob                   | 60                            | 10,000                        | minutes        | 100                 | 100                           | 8,378*             |
| 32                             | V3              | rob                   | 60                            | 10,000                        | minutes        | 100                 | 100                           | 8,378*             |
| 13                             | V3              | rob                   | 60                            | 10,000                        | minutes        | 300                 | 300                           | 8,378*             |
| 16                             | V3              | rob                   | 60                            | 10,000                        | minutes        | 300                 | 300                           | 8,378*             |
| 2                              | V4              | 2                     | 20                            | 10,000                        | minutes        | 100                 | 5,905                         | 8,378*             |
| 27                             | V4              | 2                     | 20                            | 10,000                        | minutes        | 200                 | 6,005                         | 8,378*             |
| 11                             | V4              | 2                     | 20                            | 10,000                        | minutes        | 300                 | 6,105                         | 8,378*             |
| 39                             | V6              | rob                   | minutes                       | transfer<br>to/from orbit     | hours          | 383,000             | 383,000                       | 4,360              |
| 36                             | V5              | 2                     | minutes                       | transfer<br>to/from orbit     | hours          | 80 people +<br>1650 | 18,560                        | 4,360              |
| 24                             |                 | rob                   | 7                             | orbit                         | hours          | 500                 | 500                           |                    |
| 25                             |                 | 3                     | 7                             | orbit                         | hours          | 1,000               | 6,233                         |                    |
| 23                             |                 | rob                   | minutes                       | n/a                           | minutes        | 2                   |                               |                    |
| 20                             |                 | rob                   | indefinite                    | n/a                           | indefinite     | 2                   |                               |                    |
| 22                             |                 | rob                   | hours                         | n/a                           | hours          | 4                   |                               |                    |
| 21                             |                 | rob                   | hours                         | <500                          | hours          | 2                   |                               |                    |





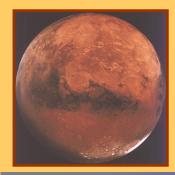

6/1/2.001

## GROUND VEHICLE ASSIGNMENT TO MISSIONS

- The general ground vehicle
   types have not yet
   been assigned to
   the missions
   identified
- An approach similar to the flight vehicle analysis will be used for the ground vehicle assignments

| Mission<br>Reference<br>Number | Vehicle<br>Type | # of<br>Missions<br>per Year | # of Crew/<br>Robotic | Mission<br>Duration<br>(days) | Distance<br>from Base<br>(km) | Travel<br>Time | Payload<br>(kg) | Equivalent<br>Payload<br>(kg) |
|--------------------------------|-----------------|------------------------------|-----------------------|-------------------------------|-------------------------------|----------------|-----------------|-------------------------------|
| 6                              |                 | 30                           | rob                   | 6                             | 500                           | hours          | 100             | 100                           |
| 43                             |                 |                              | rob                   | days                          | 500                           | days           | 100             | 100                           |
| 31                             |                 | 37                           | rob                   | 6                             | 500                           | hours          | 200             | 200                           |
| 15                             |                 | 7                            | rob                   | 6                             | 500                           | hours          | 300             | 300                           |
| 44                             |                 |                              | rob                   | days                          | 500                           | days           | 1000            | 1000                          |
| 45                             |                 |                              | rob                   | days                          | 500                           | days           | 5000            | 5000                          |
| 5                              |                 | 120                          | 2                     | 3                             | 500                           | hours          | 100             | 1736                          |
| 30                             |                 | 150                          | 2                     | 3                             | 500                           | hours          | 200             | 1836                          |
| 14                             |                 | 24                           | 2                     | 3                             | 500                           | hours          | 300             | 1936                          |
| 40                             |                 | 500                          | 2                     | days                          | 500                           | days           | 2 people        |                               |
| 41                             |                 | 1000                         | 2                     | days                          | 500                           | days           | 5 people        |                               |
| 8                              |                 | 6                            | rob                   | 30                            | 1000                          | days           | 100             | 100                           |
| 33                             |                 | 10                           | rob                   | 30                            | 1000                          | days           | 100             | 100                           |
| 17                             |                 | 12                           | rob                   | 30                            | 1000                          | days           | 300             | 300                           |
| 35                             |                 | 20                           | rob                   | 60                            | 1000                          | weeks          | 3000            | 3000                          |
| 42                             |                 | 700                          | 2                     | 1                             | 1000                          | days           | 20 people       | 5881                          |
| 9                              |                 | 4                            | rob                   | infinite                      | arbitrary                     | n/a            | 50              | 50                            |
| 18                             |                 | 4                            | rob                   | infinite                      | arbitrary                     | n/a            | 50              | 50                            |
| 34                             |                 | 4                            | rob                   | infinite                      | arbitrary                     | n/a            | 50              | 50                            |
| 51                             |                 | 25                           | 3                     | 1                             | 500                           | hours          | 2 people + 100  | 2210                          |








Contract 07600-41/GS-0096 6/1/2001

### DEVELOPMENT OF MARS TRAFFIC MODEL

| Vehicle #1 | (V1) |    |    |    |    |    |    |    |        |       |        |         |         |         |        |    |    |    |    |    |    |    |    |           |
|------------|------|----|----|----|----|----|----|----|--------|-------|--------|---------|---------|---------|--------|----|----|----|----|----|----|----|----|-----------|
| Mission    |      |    |    |    |    |    |    | (  | `olony |       | lana   | avala i | - 26 5  | Forth n | nonthe | •• |    |    |    |    |    |    |    | Total     |
| Reference  |      |    |    |    |    |    |    | ,  | Joiony | Cycle | (one d | sycle i | 5~200   | arun n  | nonths | >) |    |    |    |    |    |    |    | Number of |
| Number     | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9      | 10    | 11     | 12      | 13      | 14      | 15     | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Missions  |
| 46         | 0    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8      | 9     | 10     | 11      | 12      | 13      | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 253       |
| 47         | 0    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8      | 9     | 10     | 11      | 12      | 13      | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 253       |
| 48         | 0    | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 2      | 2     | 2      | 2       | 2       | 3       | 3      | 3  | 3  | 3  | 4  | 4  | 4  | 4  | 4  | 50        |
| 49         | 0    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8      | 9     | 10     | 11      | 12      | 13      | 14     | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 253       |
| 52*        | 1    | 1  | 1  | 2  | 2  | 2  | 3  | 3  | 3      | 4     | 4      | 5       | 5       | 5       | 6      | 6  | 6  | 7  | 7  | 7  | 8  | 8  | 8  | 104       |
| TOTAL      | 1    | 4  | 7  | 12 | 15 | 18 | 22 | 25 | 29     | 33    | 36     | 40      | 43      | 47      | 51     | 54 | 57 | 61 | 65 | 68 | 72 | 75 | 78 | 913       |
|            |      |    |    |    |    |    |    |    |        |       |        |         |         |         |        |    |    |    |    |    |    |    |    |           |
| Vehicle #2 | (V2) |    |    |    |    |    |    |    |        |       |        |         |         |         |        |    |    |    |    |    |    |    |    |           |
| Mission    |      |    |    |    |    |    |    | 0  | lonv   | Cycle | (one ( | cvcle i | s ~26 F | arth n  | nonths | :) |    |    |    |    |    |    |    | Total     |
| Reference  |      |    |    |    |    |    |    |    | Joiony | -     |        |         |         |         |        | -  |    |    |    |    |    |    |    | Number of |
| Number     | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9      | 10    | 11     | 12      | 13      | 14      | 15     | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Missions  |
| 19         | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 3      | 3     | 4      | 4       | 4       | 4       | 4      | 4  | 4  | 4  | 4  | 4  | 5  | 5  | 5  | 85        |
| TOTAL      | 3    | 3  | 3  | 3  | 3  | 3  | 3  | 3  | 3      | 3     | 4      | 4       | 4       | 4       | 4      | 4  | 4  | 4  | 4  | 4  | 5  | 5  | 5  | 85        |
|            |      |    |    |    |    |    |    |    |        |       |        |         |         |         |        |    |    |    |    |    |    |    |    |           |
| Vehicle #3 | (V3) |    |    |    |    |    |    |    |        |       |        |         |         |         |        |    |    |    |    |    |    |    |    |           |
| Mission    |      |    |    |    |    |    |    | C  | Colonv | Cvcle | (one o | cvcle i | s ~26 E | Earth n | nonths | 5) |    |    |    |    |    |    |    | Total     |
| Reference  |      | -  | -  |    | -  | -  | _  |    | -      | -     | -      | -       |         |         |        |    | 47 | 40 | 40 |    |    |    |    | Number of |
| Number     | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9      | 10    | 11     | 12      | 13      | 14      | 15     | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | Missions  |
| 3          | 6    | 6  | 6  | 7  | 7  | 7  | 8  | 8  | 8      | 9     | 9      | 9       | 10      | 10      | 10     | 11 | 11 | 11 | 12 | 12 | 12 | 13 | 13 | 215       |
| 4          | 3    | 3  | 3  | 3  | 3  | 3  | 4  | 4  | 4      | 4     | 4      | 5       | 5       | 5       | 5      | 5  | 6  | 6  | 6  | 6  | 6  | 6  | 7  | 110       |
|            | 5    | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5      | 5     | 5      | 5       | 5       | 6       | 6      | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 125       |
| 12         | 6    | 6  | 6  | 7  | 7  | 7  | 8  | 8  | 8      | 9     | 9      | 9       | 10      | 10      | 10     | 11 | 11 | 11 | 12 | 12 | 12 | 13 | 13 | 215       |
| 13         | 3    | 3  | 3  | 3  | 3  | 3  | 4  | 4  | 4      | 4     | 4      | 5       | 5       | 5       | 5      | 5  | 6  | 6  | 6  | 6  | 6  | 6  | 7  | 106       |
| 16         | 5    | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5      | 5     | 5      | 5       | 5       | 6       | 6      | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 125       |
| 28         | 6    | 6  | 6  | 7  | 7  | 7  | 8  | 8  | 8      | 9     | 9      | 9       | 10      | 10      | 10     | 11 | 11 | 11 | 12 | 12 | 12 | 13 | 13 | 215       |
| 29         | 3    | 3  | 3  | 3  | 3  | 3  | 4  | 4  | 4      | 4     | 4      | 5       | 5       | 5       | 5      | 5  | 6  | 6  | 6  | 6  | 6  | 6  | 7  | 106       |
| 32         | 4    | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4      | 4     | 4      | 4       | 4       | 4       | 4      | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 92        |
| TOTAL      | 41   | 41 | 41 | 44 | 44 | 44 | 50 | 50 | 50     | 53    | 53     | 56      | 59      | 61      | 61     | 64 | 67 | 67 | 70 | 70 | 70 | 73 | 76 | 1309      |







Contract 07600-41/GS-0096

6/1/2001

DEVELOPMENT OF MARS TRAFFIC MODEL

| Vehicle #4                                                                          | (V4)                                           |                  |                  |               |               |               |               |                  |                         |                              |                         |                                                                                              |                           |                           |                          |                      |                 |                 |                 |                 |                 |                 |                 |                                                                     |
|-------------------------------------------------------------------------------------|------------------------------------------------|------------------|------------------|---------------|---------------|---------------|---------------|------------------|-------------------------|------------------------------|-------------------------|----------------------------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------------------------------------------------------|
| Mission<br>Reference                                                                | e Colony Cycle (one cycle is ~26 Earth months) |                  |                  |               |               |               |               |                  |                         |                              |                         |                                                                                              |                           |                           | Total<br>Number of       |                      |                 |                 |                 |                 |                 |                 |                 |                                                                     |
| Number                                                                              | 1                                              | 2                | 3                | 4             | 5             | 6             | 7             | 8                | 9                       | 10                           | 11                      | 12                                                                                           | 13                        | 14                        | 15                       | 16                   | 17              | 18              | 19              | 20              | 21              | 22              | 23              | Missions                                                            |
| 1                                                                                   | 5                                              | 5                | 6                | 6             | 6             | 7             | 7             | 7                | 8                       | 8                            | 8                       | 9                                                                                            | 9                         | 9                         | 10                       | 10                   | 10              | 11              | 11              | 11              | 12              | 12              | 13              | 201                                                                 |
| 2                                                                                   | 1                                              | 1                | 1                | 1             | 1             | 1             | 1             | 2                | 2                       | 2                            | 2                       | 2                                                                                            | 2                         | 2                         | 3                        | 3                    | 3               | 3               | 3               | 3               | 3               | 4               | 4               | 50                                                                  |
| 10                                                                                  | 5                                              | 6                | 6                | 6             | 6             | 7             | 7             | 7                | 8                       | 8                            | 8                       | 9                                                                                            | 9                         | 9                         | 10                       | 10                   | 10              | 11              | 11              | 11              | 12              | 12              | 12              | 200                                                                 |
| 11                                                                                  | 1                                              | 1                | 1                | 1             | 1             | 1             | 1             | 2                | 2                       | 2                            | 2                       | 2                                                                                            | 2                         | 2                         | 3                        | 3                    | 3               | 3               | 3               | 3               | 3               | 4               | 4               | 50                                                                  |
| 26                                                                                  | 5                                              | 5                | 6                | 6             | 6             | 7             | 7             | 7                | 8                       | 8                            | 8                       | 9                                                                                            | 9                         | 9                         | 10                       | 10                   | 10              | 11              | 11              | 11              | 12              | 12              | 13              | 200                                                                 |
| 27                                                                                  | 1                                              | 1                | 1                | 1             | 1             | 1             | 1             | 2                | 2                       | 2                            | 2                       | 2                                                                                            | 2                         | 2                         | 3                        | 3                    | 3               | 3               | 3               | 3               | 3               | 4               | 4               | 50                                                                  |
| 50*<br>TOTAL                                                                        | 1                                              | 1<br>20          | 1                | 2             | 2             | 3<br>27       | 3             | 3<br>30          | 4                       | 4<br>34                      | 4                       | 5                                                                                            | 5                         | 5                         | 6<br>45                  | 6<br>45              | 6<br>45         | /               | /               | 8               | 8               | 9<br>57         | 9<br><b>59</b>  | 109<br>860                                                          |
| TOTAL                                                                               | 19                                             | 20               | 22               | 23            | 23            | 27            | 27            | 30               | 34                      | 34                           | 34                      | 38                                                                                           | 38                        | 38                        | 45                       | 45                   | 45              | 49              | 49              | 50              | 53              | 57              | 59              | 860                                                                 |
|                                                                                     |                                                |                  |                  |               |               |               |               |                  |                         |                              |                         |                                                                                              |                           |                           |                          |                      |                 |                 |                 |                 |                 |                 |                 |                                                                     |
| Vehicle #5                                                                          | (V5)                                           |                  |                  |               |               |               |               |                  |                         |                              |                         |                                                                                              |                           |                           |                          |                      |                 |                 |                 |                 |                 |                 |                 |                                                                     |
| Mission                                                                             | (V5)                                           |                  |                  |               |               |               |               | (                | Colony                  | Cycle                        | e (one o                | cycle i                                                                                      | s ~26 E                   | Earth n                   | nonths                   | 5)                   |                 |                 |                 |                 |                 |                 |                 | Total<br>Number of                                                  |
|                                                                                     | (V5)<br>1                                      | 2                | 3                | 4             | 5             | 6             | 7             | C<br>8           | Colony<br>9             | Cycle                        | e (one )                | cycle i                                                                                      | s ~26 E                   | Earth n                   | nonths                   | 5)<br>16             | 17              | 18              | 19              | 20              | 21              | 22              | 23              | Total<br>Number of<br>Missions                                      |
| Mission<br>Reference                                                                | (V5)<br>1                                      | <b>2</b><br>1    | <b>3</b><br>1    | <b>4</b><br>1 | <b>5</b><br>1 | <b>6</b><br>8 | <b>7</b><br>8 | -                | -                       |                              | -                       |                                                                                              |                           |                           |                          | -                    | <b>17</b><br>16 | <b>18</b><br>16 | <b>19</b><br>16 | <b>20</b><br>16 | <b>21</b><br>19 | <b>22</b><br>19 | <b>23</b><br>19 | Number of                                                           |
| Mission<br>Reference<br>Number                                                      | (V5)<br>1<br>1<br>1                            | 2<br>1<br>1      | 3<br>1<br>1      | 4<br>1<br>1   | 5<br>1<br>1   | -             | 7<br>8<br>8   | 8                | 9                       | 10                           | 11                      | 12                                                                                           | 13                        | 14                        | 15                       | 16                   |                 |                 |                 |                 |                 |                 |                 | Number of<br>Missions                                               |
| Mission<br>Reference<br>Number<br>36                                                | (V5)<br>1<br>1                                 | 2<br>1<br>1      | 3<br>1<br>1      | 4<br>1<br>1   | 5<br>1<br>1   | 8             | -             | 8                | <b>9</b><br>11          | <b>10</b><br>10              | <b>11</b><br>11         | <b>12</b><br>10                                                                              | <b>13</b><br>13           | <b>14</b><br>13           | <b>15</b><br>13          | <b>16</b><br>13      | 16              | 16              | 16              | 16              | 19              | 19              | 19              | Number of<br>Missions<br>243                                        |
| Mission<br>Reference<br>Number<br>36                                                | 1<br>1<br>1                                    | 2<br>1<br>1      | 3<br>1<br>1      | 4<br>1<br>1   | 5<br>1<br>1   | 8             | -             | 8                | <b>9</b><br>11          | <b>10</b><br>10              | <b>11</b><br>11         | <b>12</b><br>10                                                                              | <b>13</b><br>13           | <b>14</b><br>13           | <b>15</b><br>13          | <b>16</b><br>13      | 16              | 16              | 16              | 16              | 19              | 19              | 19              | Number of<br>Missions<br>243                                        |
| Mission<br>Reference<br>Number<br>36<br>TOTAL                                       | 1<br>1<br>1                                    | 2<br>1<br>1      | 3<br>1<br>1      | 4<br>1<br>1   | 5<br>1<br>1   | 8             | -             | 8<br>7<br>7      | <b>9</b><br>11          | <b>10</b><br>10<br><b>10</b> | 11<br>11<br>11          | <b>12</b><br>10<br><b>10</b>                                                                 | 13<br>13<br>13            | 14<br>13<br>13            | 15<br>13<br>13           | 16<br>13<br>13       | 16              | 16              | 16              | 16              | 19              | 19              | 19              | Number of<br>Missions<br>243                                        |
| Mission<br>Reference<br>Number<br>36<br>TOTAL<br>Vehicle #6<br>Mission              | 1<br>1<br>1                                    | 2<br>1<br>1<br>2 | 3<br>1<br>1<br>3 | 4<br>1<br>1   | 5<br>1<br>1   | 8             | -             | 8<br>7<br>7<br>0 | 9<br>11<br>11           | <b>10</b><br>10<br><b>10</b> | 11<br>11<br>11          | <b>12</b><br>10<br><b>10</b>                                                                 | 13<br>13<br>13            | 14<br>13<br>13            | 15<br>13<br>13           | 16<br>13<br>13<br>13 | 16              | 16              | 16              | 16              | 19<br>19<br>21  | 19<br>19<br>22  | 19              | Number of<br>Missions<br>243<br>243<br>700<br>Number of<br>Missions |
| Mission<br>Reference<br>Number<br>36<br>TOTAL<br>Vehicle #6<br>Mission<br>Reference | 1<br>1<br>1                                    | 1                | 1                | 1             | 1             | 8<br>8        | 8             | 8<br>7<br>7      | 9<br>11<br>11<br>Colony | 10<br>10<br>10               | 11<br>11<br>11<br>(one) | 12<br>10<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 13<br>13<br>13<br>s ~26 E | 14<br>13<br>13<br>Earth n | 15<br>13<br>13<br>nonths | 16<br>13<br>13       | 16<br>16        | 16<br><b>16</b> | 16<br>16        | 16<br>16        | 19<br><b>19</b> | 19<br><b>19</b> | 19<br><b>19</b> | Number of<br>Missions<br>243<br>243<br>701<br>Total<br>Number of    |





## MARS INFRASTRUCTURE MODEL



- Inputs to model
  - Population growth model
  - Requirements for habitat volume per person
  - Power requirements per person
- Functions of model
  - Calculate total habitat volume and power requirements
  - Convert habitat volume and power requirements to mass estimates
- Outputs from model
  - Habitat module mass required for delivery during each colony cycle
  - Nuclear power system mass required for delivery during each colony cycle







6/1/2001

MARS INFRASTRUCTURE MODEL EXAMPLE

| Colony | Veere   | Mars Su   | Irface Pop | oulation | Total Habitat | Habitat Power | Processing Plant | Processing Plant | Shipment  | Trips    |
|--------|---------|-----------|------------|----------|---------------|---------------|------------------|------------------|-----------|----------|
| Cycle  | Years   | Transient | Perm.      | Total    | Mass (kg)     | System* (kg)  | Power (kW)       | Power* (kg)      | Mass (kg) | Required |
| 0      | <2040   | 20        | 0          | 20       | 158,279       | 18,500        | 0                | 0                | 176,779   | 1        |
| 1      | 2040-42 | 36        | 0          | 36       | 284,902       | 37,000        | 17,893           | 444,000          | 589,123   | 2        |
| 2      | 2042-44 | 52        | 0          | 52       | 411,525       | 37,000        | 18,251           | 462,500          | 145,123   | 1        |
| 3      | 2044-46 | 68        | 0          | 68       | 538,149       | 55,500        | 18,941           | 481,000          | 163,623   | 1        |
| 4      | 2046-48 | 84        | 0          | 84       | 664,772       | 55,500        | 20,072           | 499,500          | 145,123   | 1        |
| 5      | 2048-50 | 50        | 50         | 100      | 791,395       | 74,000        | 20,125           | 499,500          | 145,123   | 1        |
| 6      | 2050-53 | 325       | 325        | 650      | 5,144,068     | 407,000       | 21,948           | 555,000          | 4,741,173 | 13       |
| 7      | 2053-55 | 600       | 600        | 1,200    | 9,496,740     | 740,000       | 23,699           | 592,000          | 4,722,673 | 13       |
| 8      | 2055-57 | 875       | 875        | 1,750    | 13,849,413    | 1,091,500     | 24,851           | 629,000          | 4,741,173 | 13       |
| 9      | 2057-59 | 1,150     | 1,150      | 2,300    | 18,202,085    | 1,424,500     | 26,458           | 666,000          | 4,722,673 | 13       |
| 10     | 2059-61 | 1,425     | 1,425      | 2,850    | 22,554,758    | 1,757,500     | 27,210           | 684,500          | 4,704,173 | 13       |
| 11     | 2061-63 | 1,700     | 1,700      | 3,400    | 26,907,430    | 2,109,000     | 27,336           | 684,500          | 4,704,173 | 13       |
| 12     | 2063-66 | 1,975     | 1,975      | 3,950    | 31,260,103    | 2,442,000     | 29,505           | 740,000          | 4,741,173 | 13       |
| 13     | 2066-68 | 2,250     | 2,250      | 4,500    | 35,612,775    | 2,775,000     | 30,533           | 758,500          | 4,704,173 | 13       |
| 14     | 2068-70 | 2,525     | 2,525      | 5,050    | 39,965,448    | 3,126,500     | 31,223           | 777,000          | 4,722,673 | 13       |
| 15     | 2070-72 | 2,800     | 2,800      | 5,600    | 44,318,120    | 3,459,500     | 33,711           | 832,500          | 4,741,173 | 13       |
| 16     | 2072-74 | 3,075     | 3,075      | 6,150    | 48,670,793    | 3,792,500     | 34,507           | 869,500          | 4,722,673 | 13       |
| 17     | 2074-76 | 3,350     | 3,350      | 6,700    | 53,023,465    | 4,144,000     | 35,718           | 888,000          | 4,722,673 | 13       |
| 18     | 2076-79 | 3,625     | 3,625      | 7,250    | 57,376,138    | 4,477,000     | 37,034           | 925,000          | 4,722,673 | 13       |
| 19     | 2079-81 | 3,900     | 3,900      | 7,800    | 61,728,810    | 4,810,000     | 37,858           | 943,500          | 4,704,173 | 13       |
| 20     | 2081-83 | 4,175     | 4,175      | 8,350    | 66,081,483    | 5,161,500     | 38,216           | 943,500          | 4,704,173 | 13       |
| 21     | 2083-85 | 4,450     | 4,450      | 8,900    | 70,434,155    | 5,494,500     | 39,445           | 980,500          | 4,722,672 | 13       |
| 22     | 2085-87 | 4,725     | 4,725      | 9,450    | 74,786,828    | 5,827,500     | 41,733           | 1,036,000        | 4,741,173 | 13       |
| 23     | 2087-90 | 5,000     | 5,000      | 10,000   | 79,139,500    | 6,179,000     | 43,336           | 1,073,000        | 4,741,173 | 13       |

\* Assume each power system produces 750 kWe has a mass of 18,500 kg.



## VEHICLE SYSTEMS DEFINITIONS



- Objectives
- Ground rules
- Flight vehicle types/analysis/etc.
- Results



# VEHICLE SYSTEM DEFINITION OBJECTIVES



6/1/2.001


- Conceptually design a family of vehicles for each propellant combination to accommodate all flight and ground missions
- Establish the propellant requirements for each mission
- Treat all propellant combinations and vehicle types fairly
- Calculate vehicle drymass
- Provide component masses to the cost model
- Investigate the effects of various mission options



## GENERAL GROUND RULES



- All initial mass estimations based on existing technology
- The effects of mass savings due to future technology will be explored
- Weather balloons and atmospheric vehicles are not modeled in detail due to their low mass and propellant requirements
- Specific ground rules for each vehicle type and subsystem drive estimations and are outlined in the Vehicle Design Ground Rules Document







**FLIGHT VEHICLE TYPES** 

Contract 07600-41/GS-0096 6/1/2001

#### Vehicle Types (aerobraking used for all)

- One-way surface hopper
- Roundtrip surface hopper
- Personnel shuttle
- Cargo shuttle

#### **Hybrid Vehicles**

- Chamber pressure: 300, 400, or 500 psia
- Nozzle expansion ratio: 200
- I<sub>SP</sub> efficiency: 95% of theoretical maximum
- Tank configuration: grain case nested in liquid tank

#### **Bi-Propellant Vehicles**

- Chamber pressure: 1000 psia
- Nozzle expansion ratio: 200
- I<sub>SP</sub> efficiency: 95% of theoretical maximum
- Tank configuration: two tanks for each propellant



Contract 07600-41/GS-0096

6/1/2001

#### PERFORMANCE CALCULATIONS FOR CONSIDERED PROPELLANTS

• CEA Code Used to Calculate the Propellant Performances

| Combinations Include:                               | <u>I<sub>SP</sub> (sec)</u> | <u>O/F</u> |
|-----------------------------------------------------|-----------------------------|------------|
| — LH <sub>2</sub> /LOX (Bi-propellant)              | 476.8                       | 5.5        |
| – LH <sub>2</sub> /SOX (Cryo hybrid)                | 469.3                       | 5.5        |
| <ul> <li>C/LOX (Vortex hybrid)</li> </ul>           | 338.4                       | 2.2        |
| - LCO/LOX (Bi-propellant)                           | 300.5                       | 0.57       |
| – SCO/LOX (Cryo hybrid)                             | 294.4                       | 0.56       |
| – SC <sub>2</sub> H <sub>2</sub> /LOX (Cryo hybrid) | 401.0                       | 2.0        |
| $- LC_2H_4/LOX$ (Bi-propellant)                     | 395.4                       | 2.8        |
| – SC <sub>2</sub> H <sub>4</sub> /LOX (Cryo hybrid) | 387.6                       | 2.75       |
| – LCH <sub>4</sub> /LOX (Bi-propellant)             | 393.0                       | 3.7        |
| – SCH <sub>4</sub> /LOX (Cryo hybrid)               | 387.0                       | 3.6        |





Contract 07600-41/GS-0096 6/1/2001

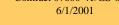
### **FLIGHT MODEL INPUT**

#### **Propellant Characteristics**


- Specific impulse
- Characteristic velocity
- Physical properties
- Mixture ratio
- Percent hydrogen

#### **Mission Requirements**

- Duration
- Delta-V
- Cargo
- Personnel


#### Subsystem Input

- Environmental characteristics
- Tank insulation
- Tank material
- Nozzle area ratio
- Number of tanks
- Chamber pressure
- Technology factor
- Reserve propellant
- Percent hydrogen





#### **FLIGHT MODEL OUTPUT**



#### **Detailed Sizing and Mass Breakdown**

- Overall vehicle drymass
- Structure
- Consumables
- Tanks and insulation
- Crew cabin
- Turbomachinery
- Lines and valves

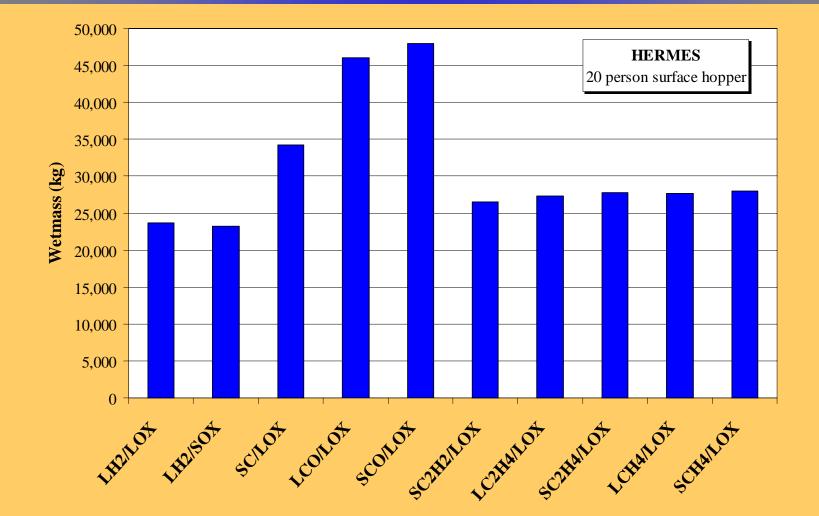
- Chamber and nozzle
- Attitude control
- Cryocooler
- ISRU processor
- Power plant
- Propellant requirements
- Hydrogen requirements





#### ROUND TRIP SURFACE HOPPER VEHICLE PROPELLANT: $SCH_4/LOX - BY$ KANDIS ELLIOT

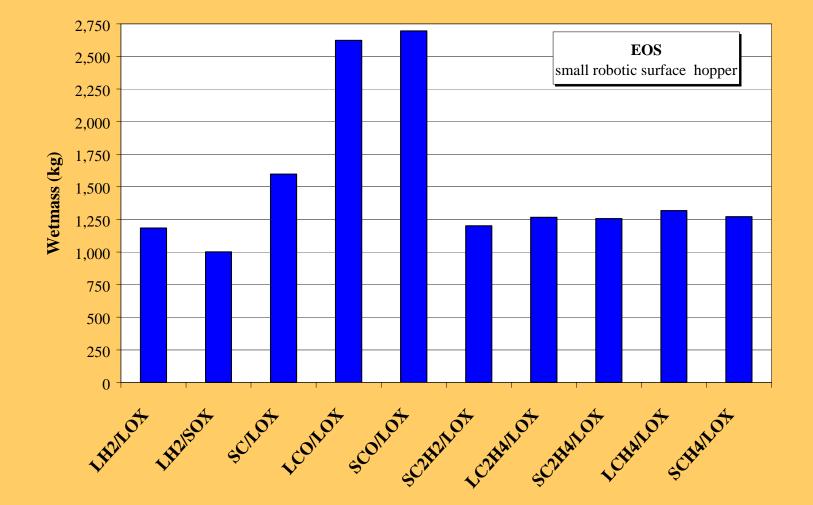








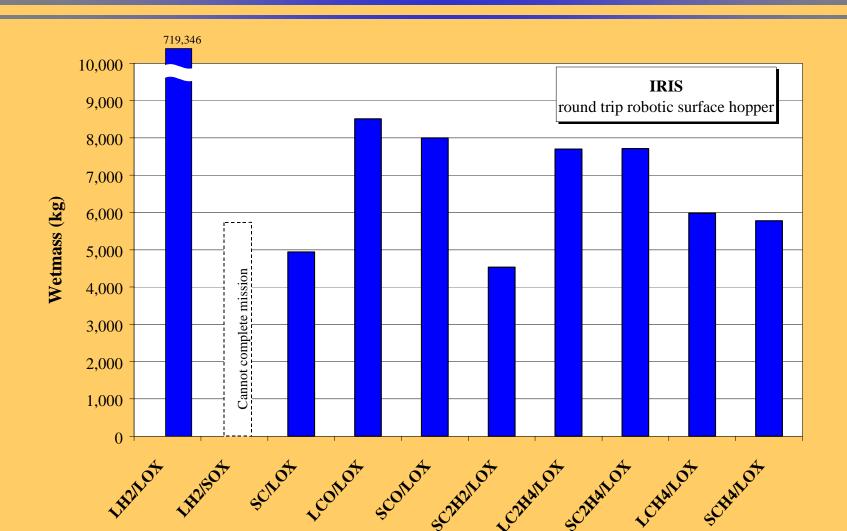

## VEHICLE WET MASS HERMES








# VEHICLE WET MASS EOS

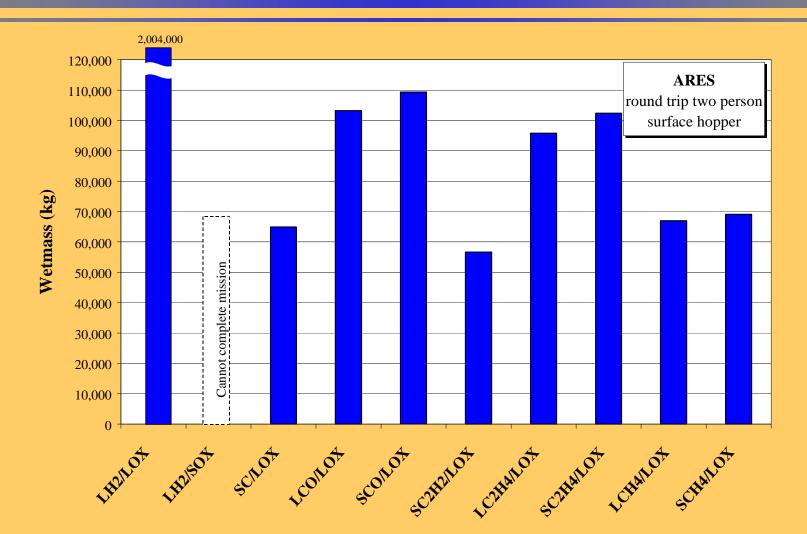







# VEHICLE WET MASS IRIS



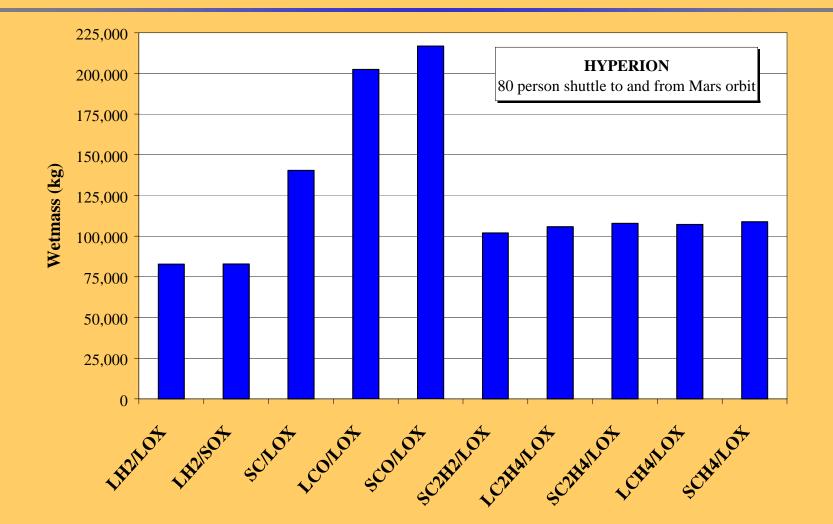


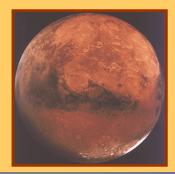



# VEHICLE WET MASS ARES



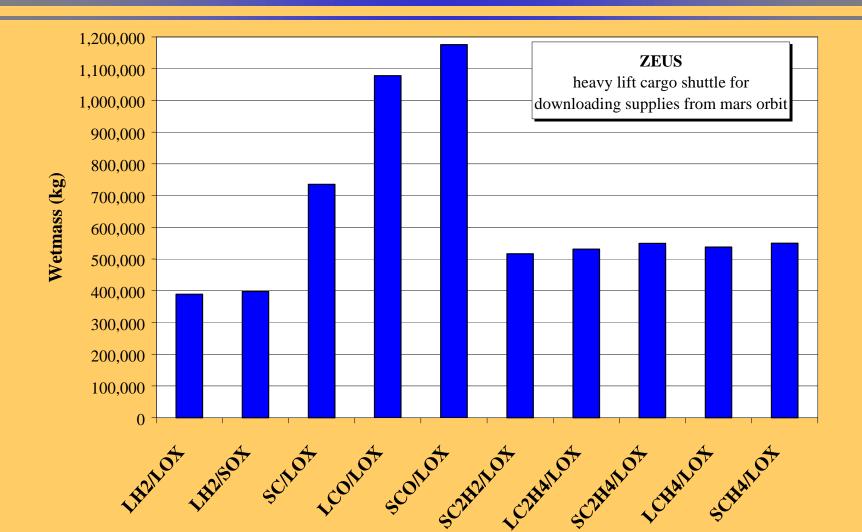





# VEHICLE WET MASS HYPERION










# VEHICLE WET MASS ZEUS







### **COST MODEL**



6/1/2001

- Determines incremental and total (50-year) scenario costs
- Presently assumes \$5K/kg payload cost for mass launched from Earth's surface and delivered to Mars orbit
- Receives as input, the mass transport requirements dictated by the 50-year scenario, choice of propellants, vehicle designs and family makeups, and direct support activities
- Determines elemental costs using mass based CER's obtained from available models and historical data
- Implemented in Engineering Equation Solver (EES)





Contract 07600-41/GS-0096

6/1/2001

#### ETO COST MULTIPLIER FOR EO-MO-EO MISSIONS

- For this study, the Earth-Mars transportation system has three elements: (1) Earth-to-orbit (ETO) launch and return system; (2) Earth orbit to Mars-orbit to Earth-orbit (EO-MO-EO) transfer stage; and (3) Mars Ascent/Decent (A/D) vehicle
- The Mars A/D vehicle is being treated as part of the Mars vicinity infrastructure, and is included as part of the Earth-to-Mars payload mass
- The EO-MO-EO transfer stage and its propellants are not considered part of the Earth-to-Mars payload
- For the purposes of this study, we have assumed this stage is a nuclear-thermal propulsion stage
- The stage is based on-orbit, but all of its propellants must be supplied from Earth via the ETO system
- Preliminary analyses of the stage and the EO-MO-EO mission show that for every kg of payload delivered to Mars orbit, 4kgs of propellant are expended by the stage
- Thus, for every kg of payload delivered to Mars orbit, 5 kg must be launched from Earth on the ETO system
- The present study requires an effective ETO cost multiplier of 5 to account for EO-MO-EO transportation





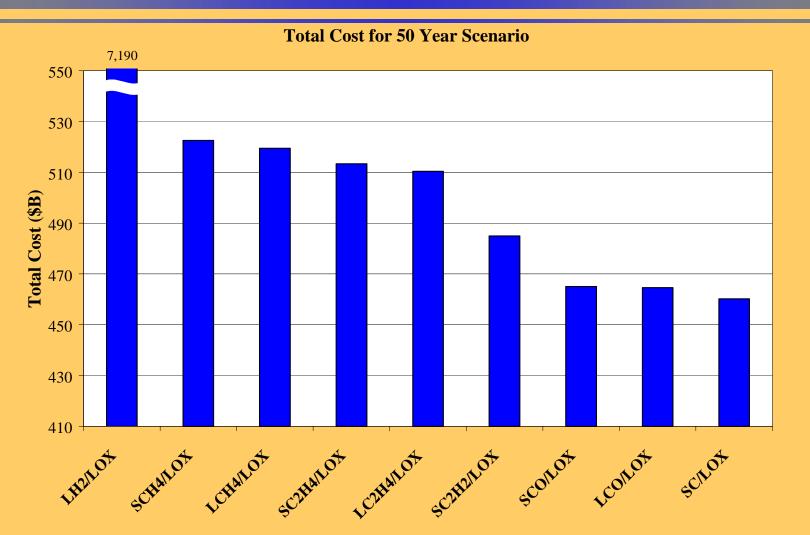
6/1/2.001

COST OF DELIVERING MARS TO MARS ORBIT

- Raw ETO costs are expected to be in the range of \$100-\$1000 per kg delivered to Earth Orbit
- The EO-MO-EO multiplier increases this to \$500-\$5000 per kg delivered to Mars orbit
- The development and operation costs of the EO-MO-EO Transfer Stage (yet to be analyzed) are expected to double this cost to \$1000 to \$10,000 per kg delivered to Mars orbit
- For purposes of the present cost analysis iteration a delivery cost of \$5000 per kg has been baselined



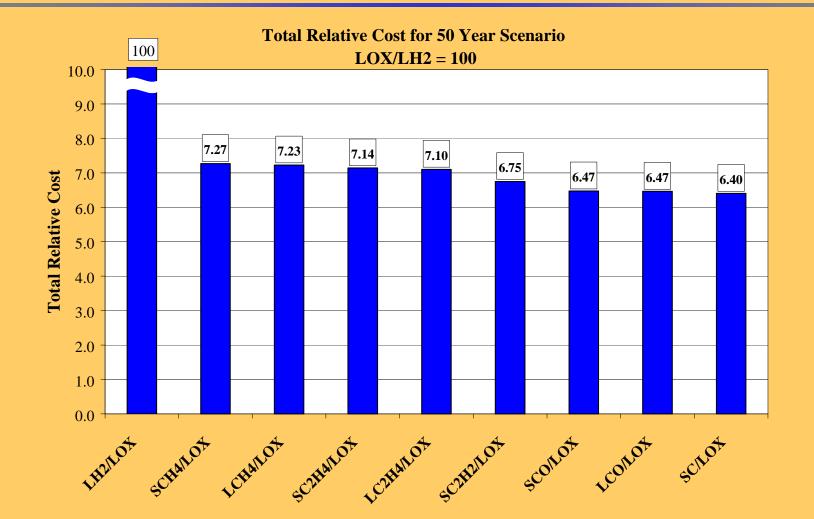
#### **ETO COSTS**

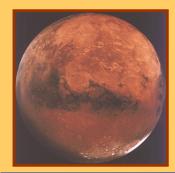



- Current Shuttle/STS ETO payload delivery costs are of the order of \$20,000/kg
- NASA has extensively studied replacement options for the current Shuttle and has concluded that ETO payload cost can be reduced by a factor of 10 by 2010, and by a factor 100 by 2025
- NASA's "Space Launch Initiative" has goals to achieve these cost reductions by the targeted dates
- Many organizations have concluded that these goals are achievable
- We therefore expect, that for a future Mars exploration/colonization efforts, ETO costs will be in the range of \$100 to \$1000 per kilogram



# TOTAL COST FOR 50-YEAR SCENARIO



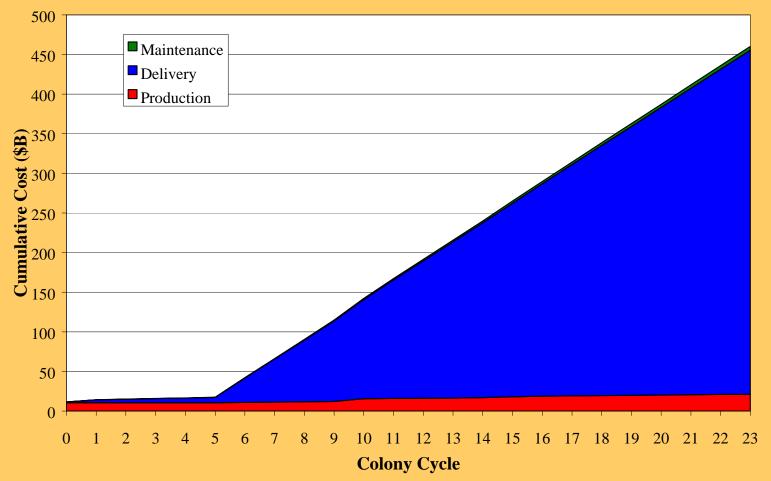






#### TOTAL RELATIVE COST FOR 50-YEAR SCENARIO TERRESTRIAL LH<sub>2</sub>/LOX = 100





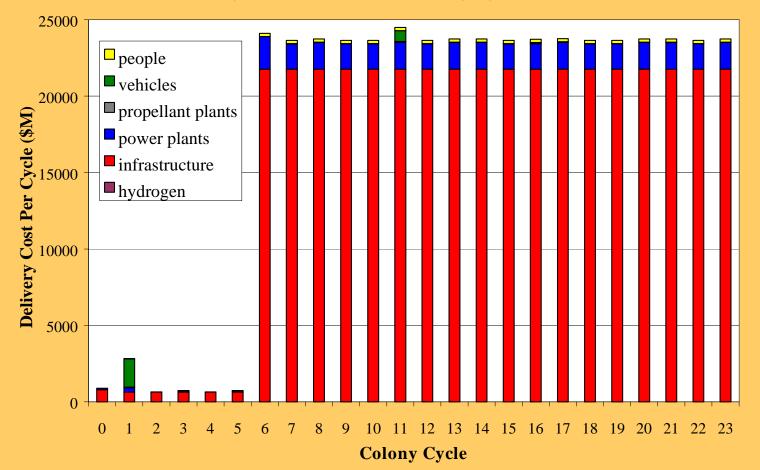



### CUMULATIVE COST BREAKDOWN FOR SC/LOX



Contract 07600-41/GS-0096 6/1/2001

Cumulative Cost vs. Colony Cycle, SC/LOX

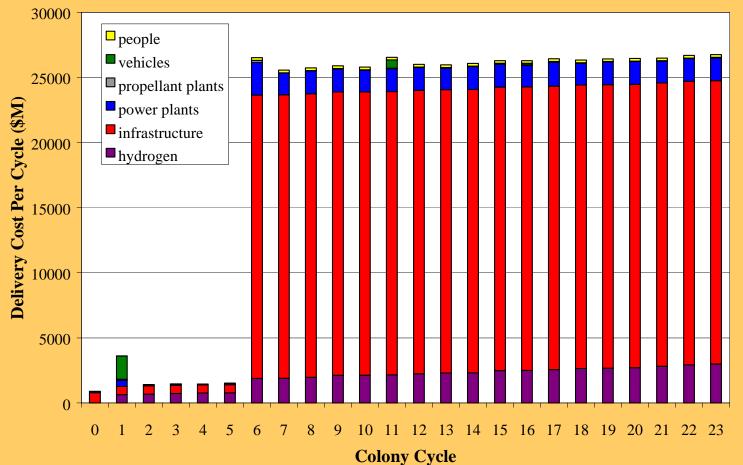





#### DELIVERY COST BREAKDOWN SC/LOX



Delivery Cost Breakdown vs. Colony Cycle, SC/LOX






# DELIVERY COST BREAKDOWN $LC_2H_4/LOX$

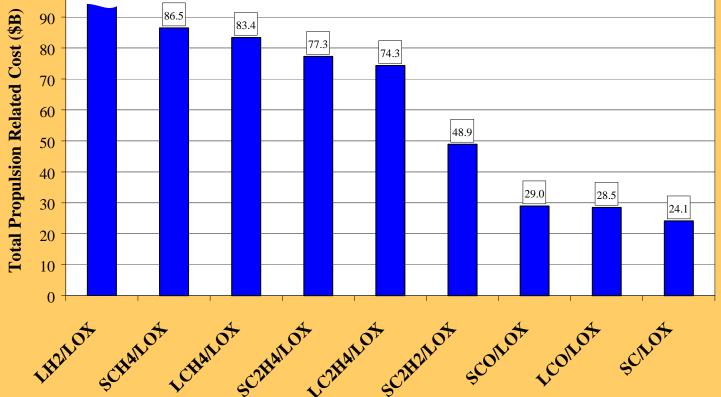


Delivery Cost Breakdown vs. Colony Cycle, LC2H4/LOX





100


#### **CUMULATIVE PROPULSION RELATED COST**



Contract 07600-41/GS-0096 6/1/2001

#### (includes propellant delivery, processing and power systems, vehicles, maintenance, and replacement parts) 6662 86.5 83.4 77.3 74.3

**Total Cumulative Propulsion Related Cost** 








# WORK TO BE COMPLETED

- Complete ground vehicle design
- Integrate ground vehicles into models
- Analyze low-model 100 person base (to 2090)
- Analyze propellant families not completed (2, 3, 4, 8, 10, 12, 13, 14, 15, 16)
- Analyze propellant family combinations
- Analyze sensitivites/options
- Develop total system analysis database
- Develop final conclusions & recommendations





# PRELIMINARY CONCLUSIONS TO DATE

- Preliminary results indicate that for Earth-supplied hydrogen and oxygen, ISRU provides overall cost reduction by factors ranging from ~14 to 16, depending on propellant choice
- Preliminary results indicate that for Earth-supplied hydrogen and oxygen. use of ISRU reduces the total propulsion cost by a factor of 77 to 276 depending on propellant choice
- For Earth-supplied hydrogen, C/O and CO/O propellant combination are the lowest-cost options, with CH<sub>4</sub>/O the highest cost of ISRU propellants -we expect this conclusion may change if Mars water is used -- as H/O or CH<sub>4</sub>/O propellant combinations may win
- The non-propulsion related costs far out weigh propulsion system costs
- Development of Mars infrastructure from ISRU is strongly recommended to reduce cost
- Transportation to Mars orbit dominates overall cost scenarios, as such, the total cost ranking is driven by the percent of hydrogen in the propellant