

CYCLICAL VISITS TO MARS VIA ASTRONAUT HOTELS

Presentation to the

NASA Institute for Advanced Concepts (NIAC) 3rd Annual Meeting:

Visions of the Future in Aeronautics and Space

by

Kerry T. Nock

Global Aerospace Corporation

http://www.gaerospace.com

June 5-6, 2001

PHASE I STUDY CONTRIBUTORS

Global Aerospace Corporation (GAC) Dr. Kim M. Aaron Dale R. Burger Dr. Angus D. McRonald Kerry T. Nock, Principal Investigator and NIAC Fellow Susan L. Nock Brenda Wistor-Linfield Science Applications International Corporation (SAIC) Alan L. Friedlander Mark K. Jacobs Jerry A. Rauwolf Planetary Resource Utilization Consultant Dr. Michael B. Duke Solar Electric Propulsion Technical Advisor Dr. John R. Brophy, Jet Propulsion Laboratory

Global Aerospace Corporation

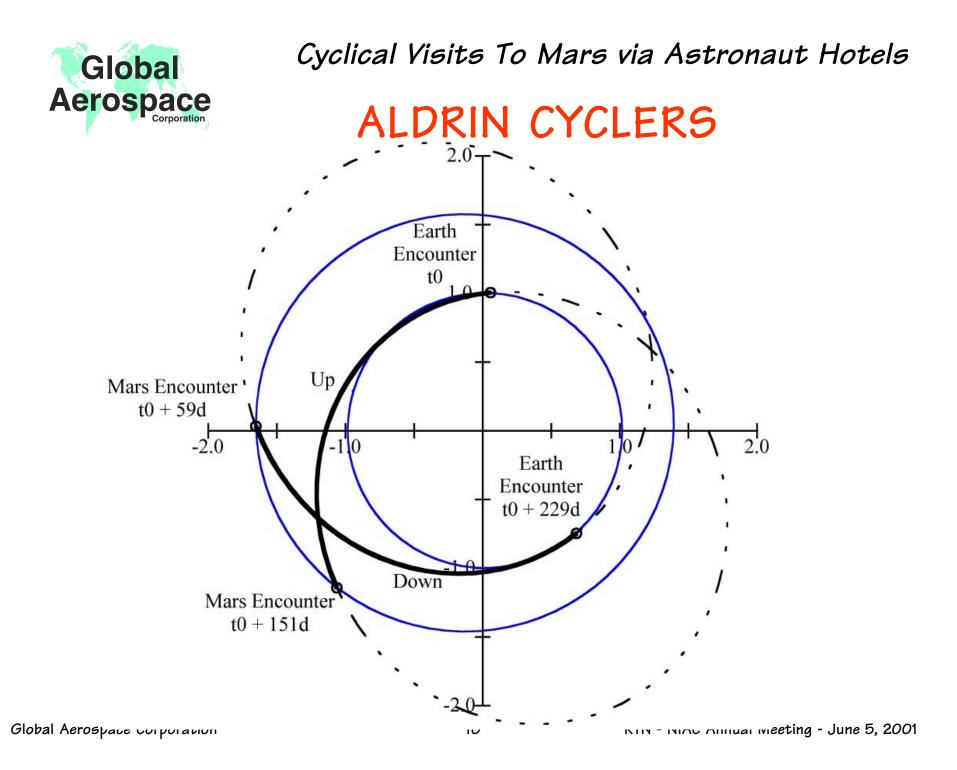
TOPICS

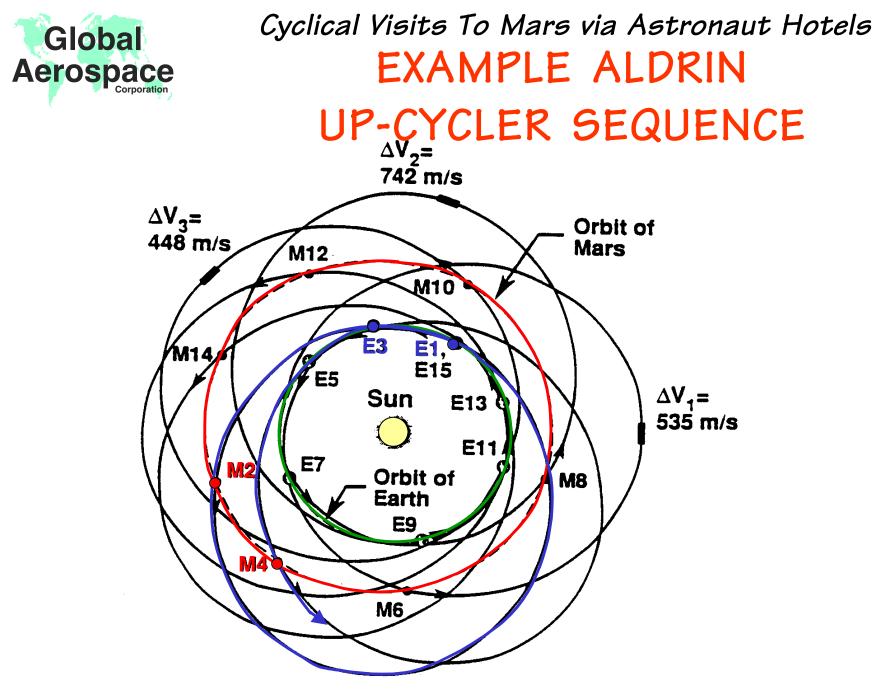
INTRODUCTION ORBIT ANALYSIS TRANSPORTATION SYSTEM ARCHITECTURE SYSTEM MODELING, ANALYSIS & COSTS SIGNIFICANCE TO NASA SUMMARY

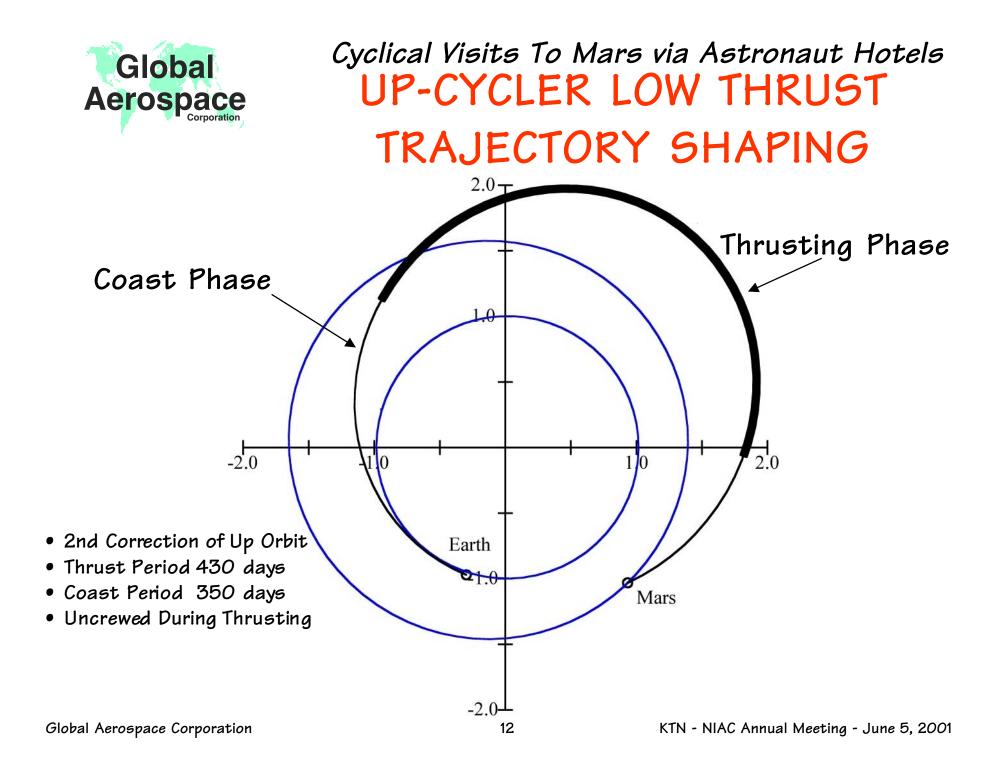
INTRODUCTION

BACKGROUND

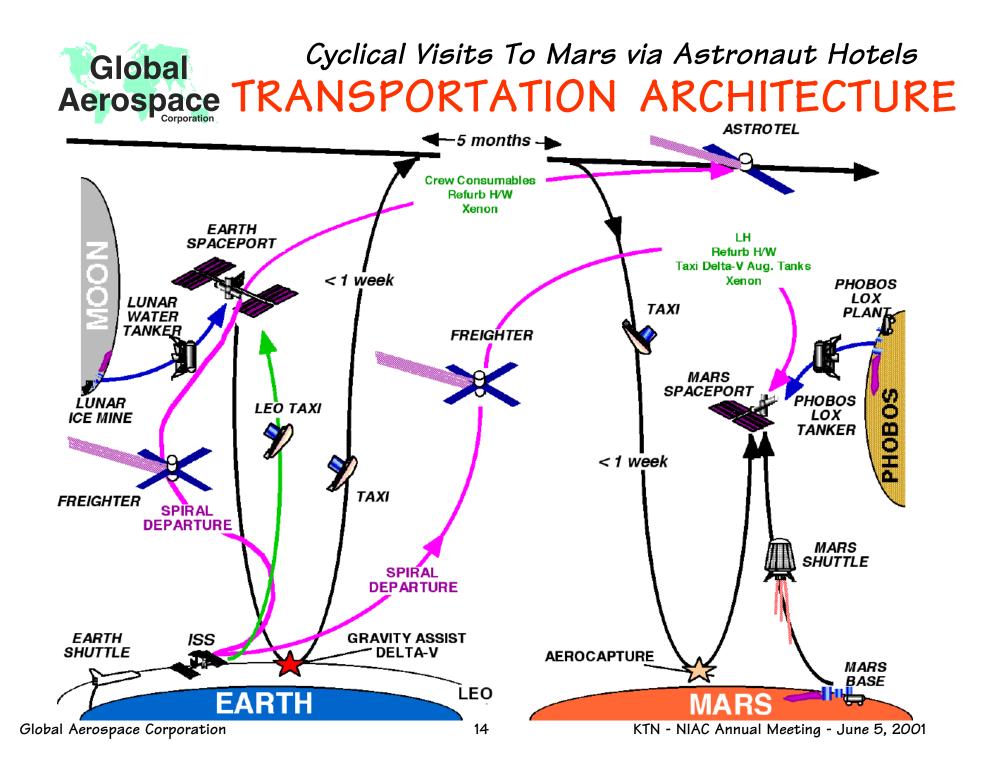
- 1985 National Commission on Space (NCOS)
 - Mars transportation infrastructure for permanent Mars base
 - Use of cyclic orbits
 - Cycling vehicles (CASTLES), spaceports and taxis
- Revolutionary NIAC concept being studied by Global Aerospace
 - Reduce crew occupation to only 5 months
 - Increase systems autonomy
 - Eliminate artificial gravity from cycling vehicles
 - Reduce cycling vehicle size
 - Use solar energy for surface and space power systems
 - Employ solar-powered ion propulsion systems (IPS) throughout
 - Significantly reduce reliance on earth propellants, consumables and refurbishment, repair and upgrade (RRU) cargo

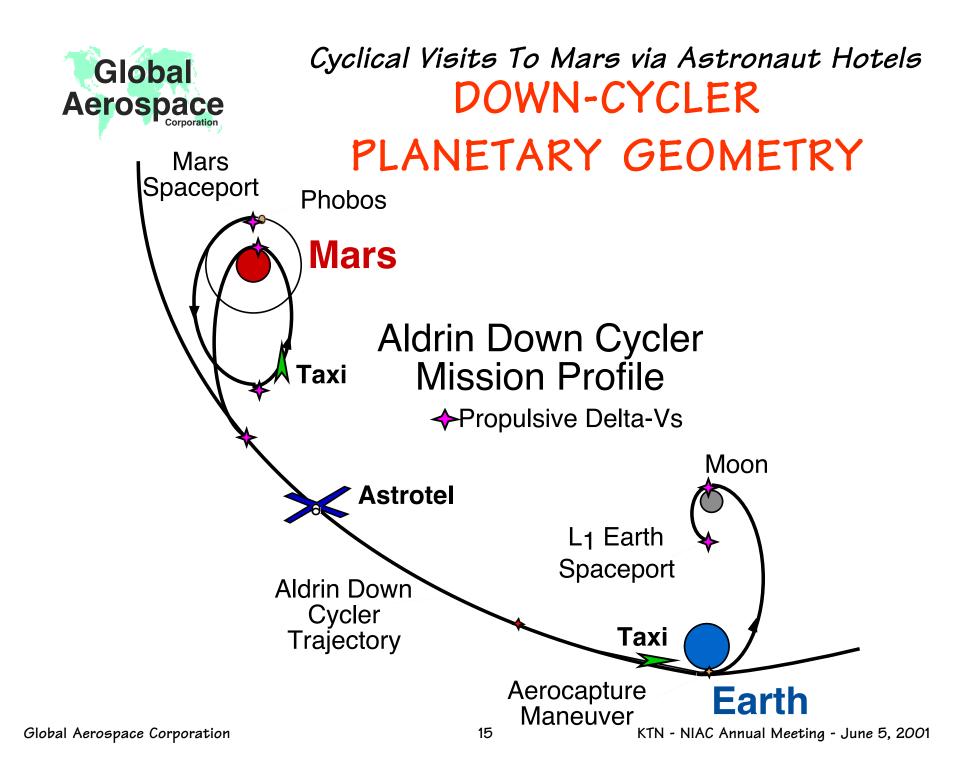

CONCEPT MOTIVATION

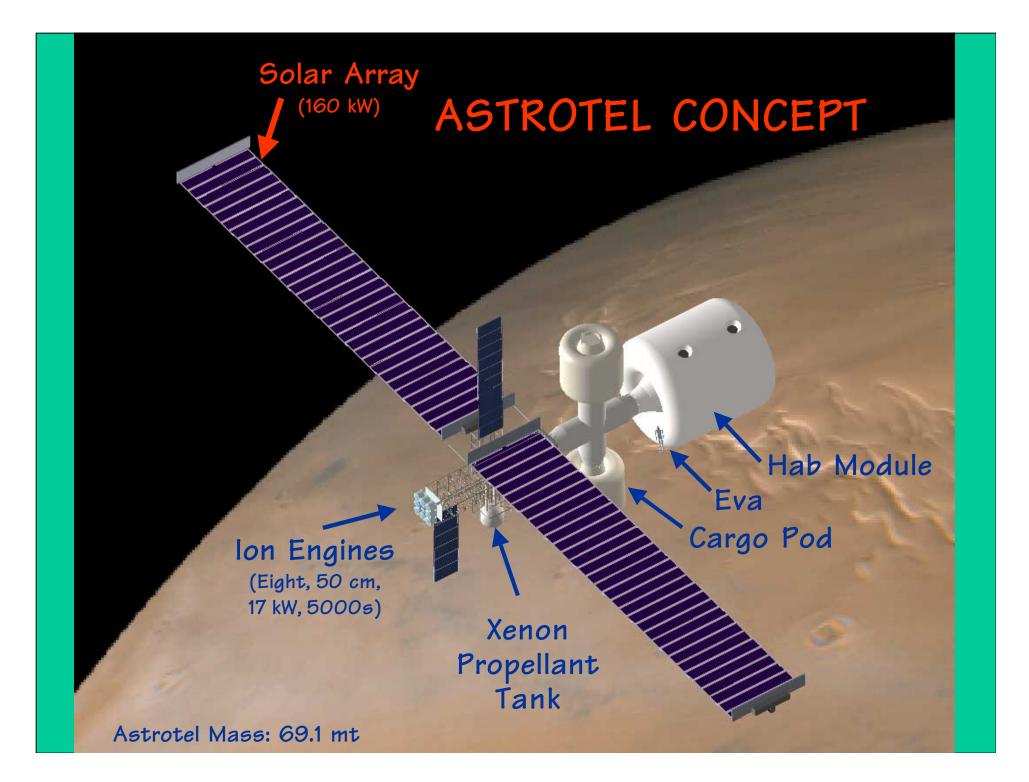

- Create permanent elements of a Mars transportation system
- Take advantage of natural orbital physics to facilitate Mars transportation
- Eliminate need for new, expensive class of rockets and launchers
- Offer environmentally safe technology, without political baggage, for transportation to and from mars
- Increase reliance on in situ resources for Mars transportation architecture
- Accelerate the timeframe for permanent inhabitation of Mars

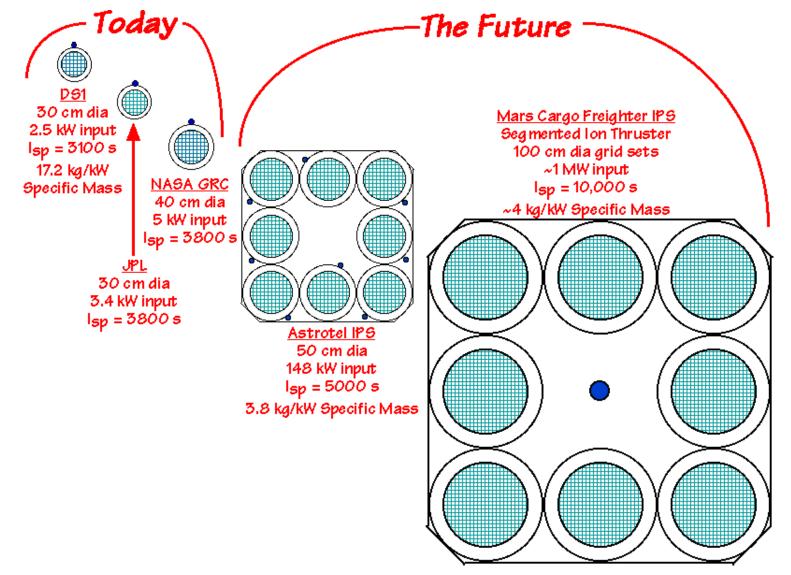

Global Cyclical Visits To Mars via Astronaut Hotels Aerospace KEYS TO THE CURRENT CONCEPT

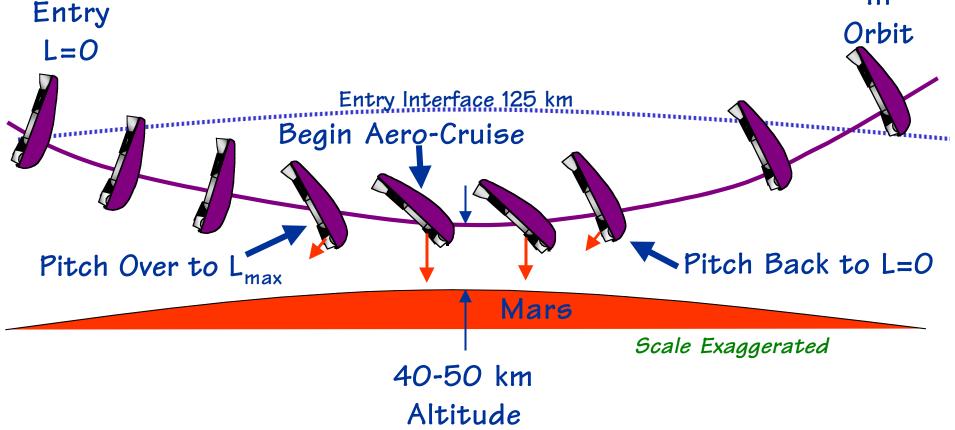
- Cycler orbits between Earth and Mars that enable fast, frequent transfers between these planets
- Astronaut hotels, or Astrotels, which are small transport vehicles capable of carrying 10 people on cycling orbits between planets
- Orbital spaceports at the planets and very small, fast, hyperbolic transfer vehicles, or taxis, between spaceports and astrotels.
- Propellant and life support in situ resource manufacturing plants
- Cargo vehicles that utilize low-energy, long-flighttime orbits to transport propellant and low value cargo to and from planets
- Shuttles to and from spaceports and planetary surfaces
 Global Aerospace Corporation
 8
 KTN NIAC Annual Meeting June 5, 2001


ORBIT ANALYSIS






TRANSPORTATION SYSTEM ARCHITECTURE


Global Cyclical Visits To Mars via Astronaut Hotels Aerospace ION PROPULSION SYSTEM (IPS)

Global Aerospace Corporation

Cyclical Visits To Mars via Astronaut Hotels EXAMPLE AERO-ASSIST PROFILE AT MARS In

ISS TRANSHAB CONCEPT

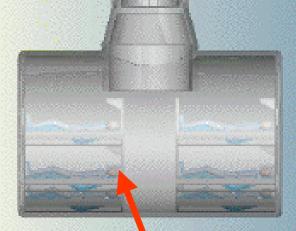
(Courtesy NASA/JSC)

Modifications

- Expansion of crew from 6 to 10
- 6-times volume/crew as STS
- Expansion of radiation protection
- Added docking port
- Include Astrotel command and control systems

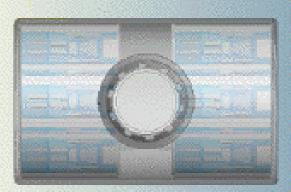
TAXI CONCEPT: LEAVING EARTH SPACEPORT

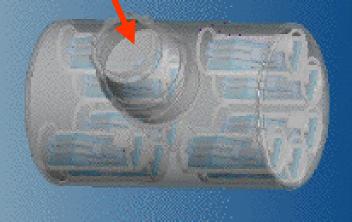
Crew Module


Aeroshell (Elliptical Raked Cone)

Propellant Tanks

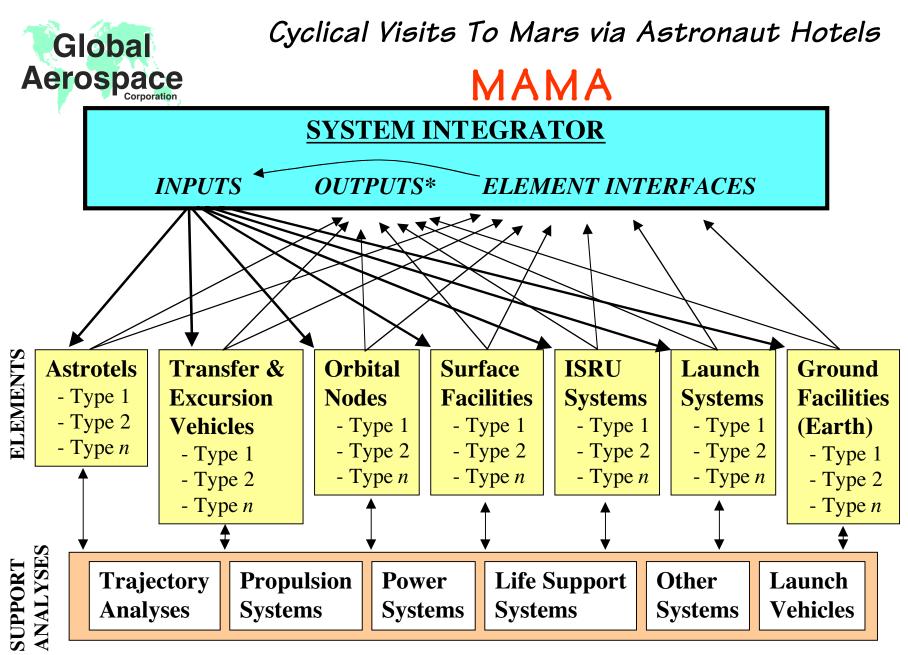
Rocket Engines (Extended Nozzle)


Taxi Dry Mass: 19.1 mt


TAXI CREW MODULE

Variable
g-VectorCrew Space Equal to ApolloSeats (10)Docking Port

TAXI IN AEROCRUISE OVER MARS



Cyclical Visits To Mars via Astronaut Hotels IN SITU RESOURCE UTILIZATION STRATEGIES

- Moon --> Polar Ice
 - Excavate regolith, heat and extract water (10.2 kg/hr)
 - Electrolyze some water into O_2/H_2 and liquefy to LOX/LH for lunar water tanker
 - Liquefy and transport most water to earth spaceport
- Earth Spaceport --> ~100% Sun
 - Electrolyze Lunar water Into O_2/H_2 and liquefy to LOX/LH (1.6 kg/hr)
 - LOX/LH storage for Taxi
- Phobos --> O_2 -Bearing Regolith
 - Carbon reduction of regolith to produce O_2 (23.2 kg/hr)
 - Liquefy to LOX and transport to Mars spaceport for storage
- Mars Spaceport --> ~100% Sun
 - LOX/LH storage for Taxi
- Mars Surface --> Water-Bearing Regolith
 - Excavate regolith (dunes), heat and extract water (8.1 kg/hr)
 - Electrolyze water into O_2/H_2 and liquefy to LOX/LH for Mars shuttle

Global Aerospace Corporation

SYSTEM MODELING, ANALYSIS AND COSTS

* System Integrator Output includes a standard WBS-format for all architecture candidates

) 🛩 🖪 🎒 🖸	X 💞 🕺	B 🖪	🚿 🗠 :	• CH +	8 (ኛ 🛛 Σ	f≈ 👌	· 🖌 🖞	I 📴	-809	ठ 👻 🕻	2 3-	3 - -S	: •⊊ ∦	S 🔍 🙋	3 88 B	🛃 🛛 🖾 🕯	塩 🏜 🖂
vetica	• 10 •	BI	Ū≣	≣ ≣		\$%	•.0	.00 €		🖽 • 🕹	<u>)</u> - A	•						
G1 🔽	=	1	1				_											
								MAN	MA_v12	xis								
A	В	G	D	E	F	G	н		J	К	L	м	N	0	P	0	Я	S
Subsystem	NCOS Reference 1995	Astrotel Study	Refurb Mass in 16 years, %	Refuito Mass, kg														
rew Module									Delta-Y:	3								
							Mars Surfa	ce to Phobo	5		5.100	m/s						
Imary Source	295	990	5%	45			Exhaust Vel				4.511							
auches, rescreinis auches, windows		90 80		45 15			Mass Fract	kan <i>1</i> 1			0.10							
acking	77			40			Phobos to	Mars Entry			962	m/s						
anels, supports	20	30		6			Mass Fract	kan 82			1.13							
awei Sysiem MAD	438	1.090		919 32			Landing											
9770 977 M	95	90	100%	90			Cano my				0	m/s						
uldance and Nav	102	90	100%	90				Landing Dec	elevation		920	m/s						
anvals & Displays svumentation	91	90 90		90 90				Wind Have			90 200	m/s m/s						
e Suppon System		1,499		729				Hove Total Landing	3		1.200							
en in	319	919		-			Mass Fract				1.01							
aal Green Module	2.262	4,923	1	1.929			Total Pho b Mass Fract	kostoLandi kon <i>8</i> 4	กฎ		1.792 1.49							
ropulsion Module																		
anks, Insulation & Plumbing	2.923	4,610	ବଲ	200														
nginas	2,000	2,000	100%	2,000								m₁ = (m₀+	C*m,*MF4)*MF/(A*(1	I-MF)-B*MF		2	
inding Geer	306	423		42												154		
ziabrake Juude Convol (diy)	5.790 229	6,451 90	00% 100%	1.905 90									- T -	$\mathbf{m}_{\bullet} = \mathbf{m}_{1}^{n} \mathbf{M}$	F4/MF+m,*1	ท⊢ 4		
xkude Canval (prop)	491	704	00%															
Imary Souccure	2,475	3,622		176										Т				
aal Propulsion Module	14.222	17.780		هړه, ه														
aal Mars Shuula	16,494	22.594		6.363	666													
							Overall Masss Fraction -	Mass Fraction <i>8</i> 0	A.⊭ Tankage Factor	B × Proportional Mass	G = Aeroshell Mass Factor	Fix Masses = Mix	inklai Mass – Mi	Envy Mass + Me	Landed Mass	Final (empty) Mass – m ^r	Propellan. Mass kaving Mass ⊬ mp1	Propellan. Mass leaving Phobos + mp2
ankage Factor Ioportional Mass Factors	9,4%	10.0%	oʻ propellan, m	۸		NCOS trotel Study	0.17 0.10	1.01	9% 10%		16.6%	4,490 6,970		04.907 40.009	26.577 32,744	16.577 <u>22.744</u>	34.964 46.096	09.509 49,714
Gouciure	4.71%	5.0%	of inklai mass				a.10	1.41	1010	0.010	13,276	0.070	(C) and (C)	~3.000				
Landing Gear	0.6%	0.6%	of inklai mass	в			h	lass of F	Propella	nt requir	red at Ma	rs every	cycle (2	l/7 years)			322,673	341.001
Aukude Canval	0.9%		of inklai mass															
							Mas	s of Pro	pellant r	equired	at Phobe	s every	cycle (2	l/7 years)				
ziocapiure	16.6%	15.0%	of Envy mass	G														
ers Gergo Sized	10.000	10.000	ka															
ais Cargo Sizeo rual Cargo Reguliemen.	10.000	7.723																
									C	10							T	
	XA		FL	<u> </u>	IV		IVI	A	3	12	21	EN		<u>EL</u>	EIV	IEI		
	at Care C		A = 4 = 1 = 1 = 0	····· Freedot		1 14	0 F		M	Charles	(Andread	17	1 1	/		· D. d. /		
🚺 🕨 📈 🛛 Propella	nt_Cargo_Re	and V	AstroterC	argo Freight	ler	A mars	Cargo Fre	eignter	Ariars_	Shuttle	Astrotel	<u>∕</u> Ta×i ,	A Lunar W	/ater Tanke	r <u>(</u> Escap	erou /		•

CARGO USE PROFILE SUMMARY

Location>	At LEO	At Earth Spaceport	At Mars Spaceport	At Surface of Mars	At Surface of Moon	At Astrotels (2 vehicles)
Total Cargo Requirements						
LOX		122,631	1,036,348	282,339		
LH		17,519	148,050	40,334		
Water		157,669		363,007		
Xenon	245,106					5,751
Refurb Mass	149,863	37,800	80,259	54,061	567	
Augmentation Tanks	107,827		107,827			
Crew Consumables Communications Satellites	119,140					119,140
Total Mass Required	621,935	335,619	1,372,483	739,741	567	139,583

- Cargo requirements over 15-years
- All masses in kg

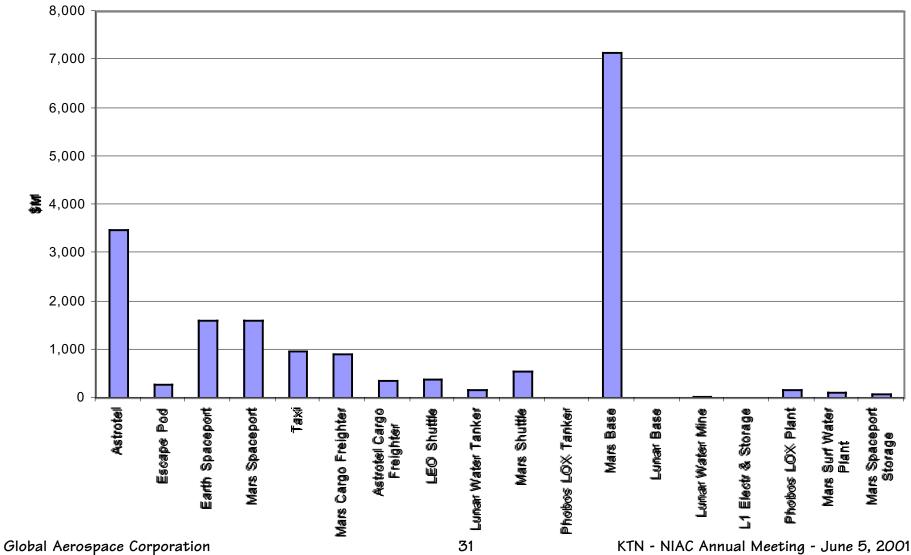
CARGO DELIVERY SYSTEMS REQUIREMENTS SUMMARY

Location>	At LEO	At Earth Spaceport	At Mars Spaceport	At Surface of Mars	At Surface of Moon	At Astrotels (2 vehicles)
Delivery Systems						
SEP Freighter Delivered Cargo		37,800	336,135			139,583
Cargo Freighter Each Trip		5,400	48,019			19,940
Lunar Water Tanker Total		157,669			567	
Lunar Water Tanker Each Trip		22,524			81	
Phobos LOX Tanker Total			1,036,348			
Phobos LOX Tanker Each Trip			34,545			
Mars Shuttle				54,061		
Mars Shuttle Each Trip				7,723		

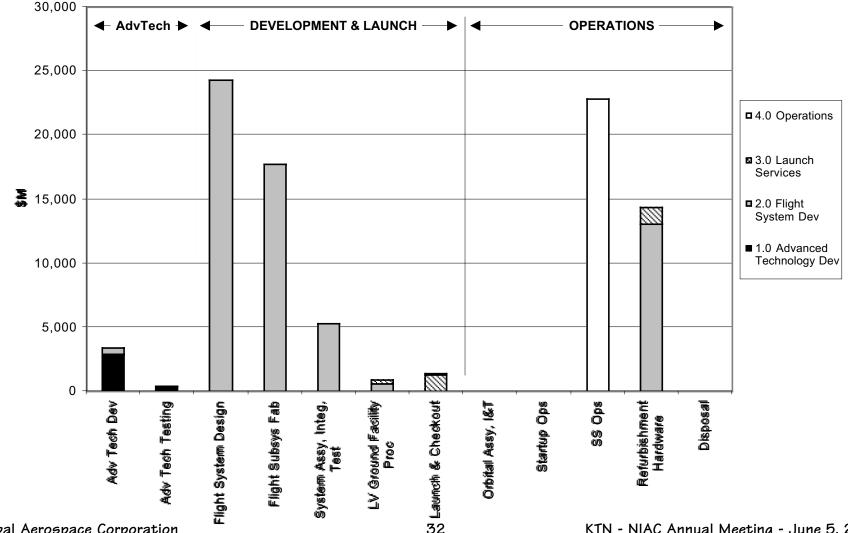
All masses in kg

NIAC / NCOS COMPARISON

ltem	NCOS Study	NIAC Study	Factor
Cyclic Transport Vehicle Size, mt	460	70	7
Total 15-year Propellant and Consumables, mt	34,335	2,011	17
Lunar LOX Production Rate, kg/day	4,014	73	55
Phobos LOX Production Rate, kg/day	1066	189	6
Primary Power Generation Mode	Nuclear	Solar	



KEY COST ASSUMPTIONS


- FY 2000 dollars
- Full cost accounting on all life cycle elements
- Major cost elements include:
 - Advanced Technology Development
 - Flight System Development
 - Launch (specific launch vehicle cost of \$2000/kg)
 - Operations (15 years, includes RRU & propellants/consumables)

Global Aerospace

Cyclical Visits To Mars via Astronaut Hotels SYSTEM INTEGRATOR OUTPUT: RECURRING COSTS

Cyclical Visits To Mars via Astronaut Hotels SYSTEM INTEGRATOR OUTPUT: LIFE CYCLE (15 YEARS) COSTS

Global Aerospace Corporation

Global

Aerospace

Cyclical Visits To Mars via Astronaut Hotels SUMMARY OF COST ESTIMATES

Development	~\$50B*
<u>Operations</u>	<u>~\$40B</u> ⁺
Total Lifecycle	~\$90B¥

* - ~\$5B/yr for 10 years

- t ~\$3B/yr for 15 years
- ¥ For reference, the "90-day Study" (1989) costs for human exploration to the Moon and Mars was estimated at ~\$400B and the NASA Mars Reference Mission (1997) was estimated at ~\$40B.

SIGNIFICANCE OF CONCEPT TO NASA

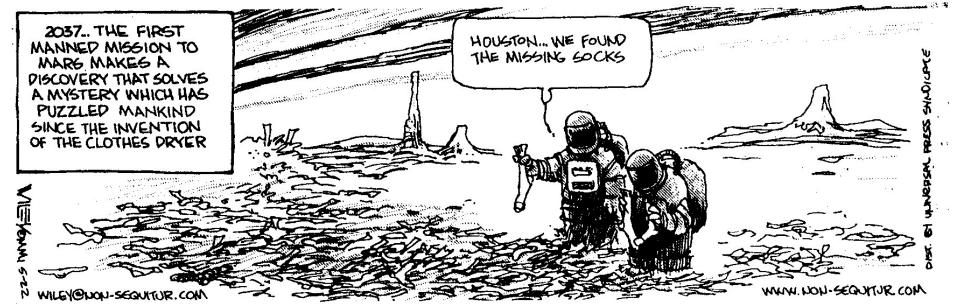
SIGNIFICANCE TO NASA

- Facilitates human exploration to Mars and beyond
- Assists the expansion of scientific knowledge by providing ready access to Mars by scientists
- Provides safe, frequent and affordable access to Mars
- Creates a significant element of the transportation architecture thus contributing to the establishment of a permanent human presence on Mars

PHASE II

- Key Team Members
 - GAC
 - SAIC MAMA development & costing, orbit analysis
 - Purdue (Dr. Longuski) Orbit analysis
 - Colorado School of Mines (Dr. King) ISRU Concepts
 - Dr. Michael Duke ISRU
- Key Technical Tasks
 - Cyclic orbit concepts and research
 - Advanced aero-assist concepts
 - ISRU system concepts development
 - Develop and assess transportation options
 - MAMA development and costing

SUMMARY


SUMMARY

- This transportation architecture, along with Astrotels, enable low-cost, frequent access to Mars for scientists and explorers
- System concepts have been developed that could be utilized in expedition phases of Mars exploration
- This architecture provides a framework and context for future technology advance and robotic exploration
- The tools developed during this study can be used to analyze and compare future technology and system options

1

NON SEQUITUR By Wiley

