

CYCLIC VISITS TO MARS VIA ASTRONAUT HOTELS OR THE INTERPLANETARY RAPID TRANSIT (IRT)

SYSTEM

Presentation to the

NASA Institute for Advanced Concepts (NIAC) 4th Annual Meeting

Lunar and Planetary Institute, Houston TX

By Kerry Nock Global Aerospace Corporation http://www.gaerospace.com/

12 June 2002

TOPICS

- Phase II Contributors
- Interplanetary Rapid Transit System (IRT) Concept Overview
- Visions, Goals, Assumptions, and Realities
- Orbital Tracks and Space Lines
- Using the Atmosphere To Put The Brakes On
- Taxi, Shuttle, Transport Hubs, and Hotel Design Concepts
- Example Transit Schedule
- Turning Planet Dirt Into Rocket Fuel and Other Useful Things
- Technologies To Build Upon
- What's The Best Architecture and How Much Will It Cost?
- Summary

Global The Interplanetary Rapid Transit (IRT) System Aerospace PHASE II STUDY CONTRIBUTORS

Global Aerospace Corporation

Dr. Kim M. Aaron Dale R. Burger Dr. Angus D. McRonald Kerry T. Nock, NIAC Fellow Dr. Paul Penzo Chris Wyszkowski Science Applications International Corporation (SAIC) Alan L. Friedlander Mark K. Jacobs Jerry A. Rauwolf Planetary Resource Utilization Consultant Dr. Michael B. Duke, CSM Center for

Commercial Applications

Purdue University

Dr. James Longuski Joseph Chen* Troy McConaghy* Masa Okutsu*

Global Aerospace Corporation

Colorado School of Mines

Dr. Robert King Dr. Michael B. Duke Phobos Excavation Dr. Robert King Lee Johnson Tim Muff Senior Design Lunar Ice Excavator Luke Anderson Michael Martinez-Schifer Adrian Sikorski **Ryan Smelker** Craig Softley Senior Design Mars Mining Rover Dr. Robert Knecht Dr. Dave Munoz Misty Cates Kim Fleming Wendy Holland Nicholas Kimball

Colorado School of Mines, cont.

Senior Design Carbothermal Reactor Dr. Ron Miller Dr. Colin Wolden Mailasu Bai Lindsey Barkley Viki Cinstock Katrina Britton Jessica Clark April Dittrich Devin Dyar **Biljana** Djoric **Oliver** Eagle Jon Elarde Keith Gneshin Michelle Manichanh Chris Pitcher Mark Still Liz Townley

KTN - Annual Meeting - June 12, 2002

INTERPLANETARY RAPID TRANSIT (IRT) SYSTEM CONCEPT

Mars Base Systems	# of Units	Unit Mass, mt	Total Mass, mt
Life Critical Systems			
Habitat	4	38.5	154.0
Washdown facility	2	0.9	1.8
Mission Support Systems			155.8
120 kW Power Source (solar array @100W/kg) Power Management, Distribution and Maintenance	2 2	1.2 0.3	2.4 0.6
Energy Storage (NRFC packages) Suitup/Maintenance Facility	2 2 2	1.1 1.8	2.2 3.6
Pressurized Transporter	3	9.1	27.3
Open Rovers	3	1.0	3.0
Inflatable Shelter w/Airlock Communication Satellites	10 3	0.5 0.8	
Crane	2	5.0	10.0
Trailer	2	2.0	4.0
			60.5
Science and Exploration Systems			
Base Laboratory	2	13.6	27.2
Mobile Laboratory	3	9.1	27.3
200 m Drill	1	2.3	2.3
10 m Drill	3	0.1	0.3
	3	0.3	0.9
Robotic Rovers Weather Station	10 5	0.2 0.2	2.0 1.0
Survey Orbiters	2	0.2 0.8	1.0
		0.0	62.6
Total			278.9

VISIONS, GOALS, ASSUMPTIONS AND REALITIES

A VISION OF THE FUTURE

- Permanent inhabitation of Mars by scientists and explorers occurs as quickly as financially feasible
- Earth-Mars transit system is created providing safe, frequent and affordable travel
- Reduced reliance on Earth for space activities
- Pathways are opened for exploration beyond Mars

SUGGESTED DEVELOPMENT GOALS OF A FUTURE TRANSIT SYSTEM

- Demonstrate physiologically feasible travel to and from Mars (zero-g, radiation protection)
- Minimize transit system life cycle costs
- Maximize use of natural resources
- Establish context for future human space exploration and development, space technology advance, and robotic missions
- Incorporate advanced technology to lower costs and make trips safer

KEY ARCHITECTURE STUDY ASSUMPTIONS

- Sustained Mars Base of 20 people that is self sufficient except for hardware
- Earth launch costs are \$2,000 per kg to low Earth orbit
- Use solar energy for space and surface power
- Use space resources to make rocket fuels
- Use currently and clearly foreseeable technologies
- Transport crews and cargo in efficient steps with specialized vehicles

REALITIES

- An Earth-Mars transportation system will be expensive and will require
 - imagination to minimize costs, «
 - significant and sustained political leadership and
 - international collaboration
- If used, space nuclear reactor system costs will be very expensive without DOD and/or commercial applications
- Launch costs will be an order of magnitude less when they are

ORBITAL TRACKS AND SPACE LINES

CYCLIC ORBIT OPTIONS

Low-thrust Aldrin Cyclers

- Up and Down Cyclers, two Astrotels
- Gravity assist to rotate orbits to achieve 15-year repeating sequence
- Low-thrust guidance maneuvers
- 5 month trips to and from Mars
- High Taxi ΔV to leave Mars

Semi-Cyclers

- Three Astrotels on 78 month trips between Mars arrival and departure
- High-thrust Mars escape / capture
- Five Earth flybys between Mars departure and arrival
- 6 month crew trips to / from Mars
- 1.5 year Astrotel stay time at Mars

MARS DEPARTURE

EARTH

MARS ARRIVAL

Stopover

Cyclers

EARTH

LAUNCH

- Two Astrotels on near-minimum energy orbits
- Stops at Earth and Mars
- High-thrust escape/capture
- 4-7 month trips depending on opportunity and fuel loading
- 1.5 year Astrotel stay time at Mars

HYPERBOLIC RENDEZVOUS TRAJECTORY GEOMETRY

Global Aerospace Corporation

USING THE ATMOSPHERE TO PUT THE BRAKES ON

MARS AEROCAPTURE PROFILE

Aerocapture at Mars saves about 83 mt of fuel

Global Aerospace Corporation

10 crew, Earth / Mars aerocapture, 12 m diameter aeroshell (Elliptical Raked Cone), 16.1 mt vehicle dry

Global Aerospace Corporation

KTN - Annual Meeting - June 12, 2002

TAXI, SHUTTLE, TRANSPORT HUBS, AND HOTEL DESIGN CONCEPTS

CREW MODULE

KEY FEATURES

- Supports crew of 10 for 7^d
- Apollo accommodations
- G-aligned crew hammocks
- 7.2 mt including life support and power
- Taxi and Mars Shuttle vehicle versions
 - Mars Shuttle: No radiation shielding and minimal energy storage for <3 hour flights, add second airlock for Mars surface access
 - Taxi: Energy storage for 7 days, minimal radiation shield, single airlock

TAXI CONCEPT: LEAVING EARTH SPACEPORT

H₂ Propellant Tanks

Rocket Engines (Advanced RL-10 type, Extended Nozzle)

Taxi Dry Mass: 16.1 mt

TAXI DOCKING TO ASTROTEL

Solar Array (160 kW)

Cargo Pod

Hab Module

Ion Engines (Eight, 50 cm, 17 kW, 5000s)

Astrotel Mass: 69.1 mt

MARS SHUTTLE AT ENTRY

KEY FEATURES 10 crew Direct entry from Phobos orbit 10 mt cargo 17.9 mt vehicle (dry)

Common Crew Module LH Tank

LOX Tank

Cargo Containers

AEROBRAKE DESIGN

• 20 m diameter, Viking aeroshell shape, open back

- 30 deployable and stowable segments
- Al structure & honeycomb substrate, STS-type TPS
- Deployed at the Mars Spaceport
- Stowed before departure from Mars surface

MARS SHUTTLE LANDING

MARS SHUTTLE AFTER LAUNCH

Stowed Aerobrake

3 Rocket Engines (Adv. RL-10 type, 2 req.)

IRT TRANSIT SCHEDULE

KEY ADVANTAGES OF ALDRIN CYCLERS

- Astrotels can take advantage of ion propulsions system (IPS) technology
- Astrotels never stop
- With IPS, one can incrementally increase the Astrotel capability over time with very little propulsion cost
 - Increase radiation shielding thickness
 - Incorporate artificial gravity if needed
 - Add redundant Taxi and/or escape vehicles
 - Grow a cache of repair hardware, propellants and consumables

TURNING PLANET DIRT INTO ROCKET FUEL AND OTHER USEFUL THINGS

TURNING NATURAL RESOURCES INTO ROCKET FUEL

- Moon --> Water from Polar ice
- Phobos --> O_2 -bearing regolith
- Mars Surface --> Water-bearing regolith
- Spaceports --> Electrolysis of water to and/or storage of LH and LOX using solar energy

SPACE RESOURCE PROPELLANT PRODUCTION SYSTEMS

Global Aerospace Corporation

32

Global Aerospace PHOBOS/MARS BUCKET WHEEL EXCAVATOR SYSTEM DEVELOPMENT

Global Aerospace Corporation

Regolith Bin

MARS PROPELLANT PRODUCTION AND STORAGE FACILITY CONCEPT

TECHNOLOGIES TO BUILD UPON

TECHNOLOGIES TO BUILD UPON

- Human physiology and life support in space
- Automation and robotics
- Assembly and operations in space
- Aero-assist
- Ion propulsion systems
- Space resource mining, processing and manufacture
- Photovoltaic energy generation
- Fuel cell energy storage
- High-strength, lightweight structures
- Advanced Computers
- High-bandwidth interplanetary communications

WHAT'S THE BEST IRT DESIGN AND HOW MUCH WILL IT COST?

MISSION ARCHITECTURE MODEL AND ANALYZER (MAMA) DESCRIPTION

- MAMA is a tool to support trade study analyses of Mars Astrotel Concepts
- MAMA integrates multiple lower-level models enabling assessment of technology selection/definition impacts on an overall Mars Astrotel scenario's life cycle requirements
- MAMA maintains a database of past runs to allow comparison of features from different Astrotel scenarios
- MAMA will use a multi-level approach for collecting inputs

MAMA is better for comparing different options than generating absolute cost estimates

՝ File Edit V D 🛩 🖬 🎒 🕻	1		ormat 1. 🝼 🕨	0 + 04	- @	. 😤	5 1	. <u>A</u> ∣	ZI ≬0	, 🖬 🍕	75%	- 5) }>	• \$ > -{}	≪: 4	Sat 3:2		8		soft Exc
		_												1		<u> </u>				
lvetica	▼ 10	B				\$	%,	, *. 0 , 00 →	• 00 t		🔄 + 🖄	•• 🗛	• %	i d' 🔍		-	🛛 🖸 🖸	a 🔽	2 🔁 (🙆 🗣
K28 🔻	=																			
								MAM	A v12.	xis [Re	ad-Onh	vl								
A	B	C	D	E	F	G	н			K	L	4	N	0	P	0	Я	S	T	
Subsystem	NCOS Reference 1995	Astrotel Study	Refurb Mass in 16 years, %	Refurb Mass, kg																
Crew Module									Delta-Y	s										
								face to Pho	sode		5.100									
Primary Suuciure	295	990	5%	45			Exhaust V				4.511									
Couches, resultants	36	90	90%	- 16 45			Mass Fra	culan 81			3.10		MF1			49,714				
Haiches, windows Docking	95 77 23	90 90	29% 90%				Dhahart	lo Mars Ent			ഞ	ጣ/ኤ				a3./ ja				
Panels, supports	20		20%				Mass Fra		11 7		1.13									
Power System	400	1.090	79%																	
PMAD	105	105	30%				Landing													
Comm	95		100%	90								m/s								
Guidance and Nav	102	90	100%	90					eceleration			l m/s								
Convols & Displays	91	90 90	100%					W Ind				m/s								
Instrumentation	96		100%	90				Have				1 m/s			MF Gheck	2				
Life Support System Crew	990 019	1,499 919	90%. /%	729			Mass Fra	Total Land	ing		1.200		мға	lak!-!	ú). Mars en Mars			+		
G HAN	18	818	Ú%				Hass Hig	COD9 AU	-		1.11		MP 0	Inklat	Massion Mars 70,449	Gunace				
Total Crew Module	2.262	4,923		1.929			Total Phe	abos to Lar	ndina	-	1.792					Check				_
				1.020			Mass Fia				1,49	1	WF4		Landed Mass					
Propulsion Module															32.744	_				
																3 Gheck				
Fanks, Insulation & Plumbing	3,009	4,770	ବ୍ୟ	239																
Engines	2,000	2.000	100%	2,000						$m_{1} = 0$	MFX+C	2*m.*M	F3)*M	F1/(A*(1-	MF1)-B	*MF1-C	2*MF3+	-1)		
Landing Gear	336	420	10%									_C						<u> </u>		
														m – m	*MF3/M	E±m *I	152			
Aerabrake Autude Convol (dry)	5,964	6,451	30%										T	$m_e = m$		T THE	113			
Aukude Canval (ary) Aukude Canval (prap)	229 491	90 704	100%																	
Primary Succure	2,475	3.922		176																
	212		210																	
Total Propulsion Module	14,393	17.921		200,0																
Total Mars Shutle	16,695	22.744		6.371	<i>6</i> 1															
							~ "			-				_				_		
							Overall		A =	B.	G -	Fb.	Inklai Mat	8 c		Final	Propellant			
							Masss Fraction -	Mass Fraction 8	n Tankaga	Proportion al Mass	Aeroshell Mass	Masses +	on Mars	14-	Landed Mass on Mars	(empty)	Mass leavin			
							MF		Factor	Factors	Factor	Mix	Surface +	MI ***	OF Mars	Mass + m(Mais + mp1	4		
Fankage Factor	8,4%	10.0%	of propellant n	٨		NCOS	3.1	7 1.3	1 97		16.6%	4,490	92.94	9 35,419	26.577	16.577	35,993	il –		
Proportional Mass Factors	6.3%	6.6%	F		Astro	tel Study	0.1										47,703			
Succure	4.71%		oʻinklal mass								1 and TD	Gard						-		
				1 _					D									+		_
Landing Gear	0.6%	0.6%	oʻinklal mass	В										2 1/7 years)						
Aukude Convol	0.9%	1.0%	of inklai mass					Total	<u>Mass of</u>	Propellar	<u>nt require</u>	ed at Ma	<u>rs for 1</u> 5	year Cycle			333,923	1		
Nerocepture	16.6%	16.00	of Envy mass	c														+		
veracaptore	10.0%	1970.00	o Entry mass														Total	-		
													l	Phabas			Propellant			
													Massa.	departure	Envy Mass	Landing	Mass leaving	al		
	🔺 🔺 🛔												Phabas	propellan.		Propellan.	Photos -	<u>له</u>		
Mars Cargo St				12				A											<u>~ N I 7</u>	1
Mars Cargo St			kq										¥Û.1		3	9.7				
Actual Gargo R. Jul. m. x.		7.7	kg 📕 📕								As	ylel 🗤	49.7		a line	a Lee st	- <u>5</u> 1	/ 📕 🎩 🖉	2. I. N.	
									1										_	
Chaw		10					Life	ss of Pr	onellast	required	at Phohe		evela (3	2 1/7 years]						
Helgh.	a.	10					ma	Total Ma	ss of Pe	nnellast :	enuired -	at Phohe	s for 15	year Cycle		h	111,791	d —		_
Radius										-penant I	-quired (,			714731	-	_	
v alo								-												_
An raug								-								-				
	n_Systems	: / Pow	er_System	ns / Pr	opellant	_Cargo.	Regmt:	s / 1	Astrotel (Cargo Frei	ighter –	/ Mars	Cargo Fr	eighter 🛝	Mars_Shu	ittle 🖉 A	strotel /	Taxi 🛔	1111	•
		0					4	- 0				n		A						
many X Mar 1	AutoSha				1 📶	2	8	Δ :												
	source and					V +	- 11	n -												
raw 🔭 🦌 🌀 🛛 A	acosna	pes .																		

MAMA LIFE CYCLE COST OUTPUT

SUMMARY OF EARLY, ROUGH MAMA COST ESTIMATES

Development: ~\$5B/yr for 10 years Operations: ~\$3B/yr

Assumes:

- Advanced Technology Development
- Flight System Development
- Launch (specific launch vehicle cost of \$2000/kg)
- Operations (includes repair, refurbish, upgrade hardware & propellants/consumables)
- FY 2000 dollars

Global Aerospace Corporation

ADVANCED MAMA INFORMATION FLOW

POSSIBLE MAMA STUDIES

- Different cyclic orbit options
- Alternative transportation nodes
- Solar vs nuclear reactor power
- No use of natural space resources
- Higher/lower launch costs
- ISRU aerobrakes
- Impact of cyclic orbit option on increased Astrotel mass for artificial gravity, increased radiation shielding, hardware & consumable reserves

- The Astrotel interplanetary rapid transit system architecture:
 - Is cost effective because it reuses transit system elements
 - Uses natural space resources to produce low-cost propellants
 - Enhances human health and performance due to short trips
 - With Aldrin cyclers, can easily expand Astrotel to enhance system, and
 - Can rely entirely on solar power systems
- Concepts have been developed that could be utilized in robotic pathfinder exploration, high Earth orbit operations missions, and expedition phases of Mars exploration
- The tools developed during this study can be used to analyze and compare future technology and system options