CYCLIC VISITS TO MARS VIA ASTRONAUT HOTELS
OR
THE INTERPLANETARY RAPID TRANSIT (IRT) SYSTEM

Presentation to the
NASA Institute for Advanced Concepts (NIAC) 4th Annual Meeting
Lunar and Planetary Institute, Houston TX

By Kerry Nock
Global Aerospace Corporation
http://www.gaerospace.com/

12 June 2002
The Interplanetary Rapid Transit (IRT) System

TOPICS

• Phase II Contributors
• Interplanetary Rapid Transit System (IRT) Concept Overview
• Visions, Goals, Assumptions, and Realities
• Orbital Tracks and Space Lines
• Using the Atmosphere To Put The Brakes On
• Taxi, Shuttle, Transport Hubs, and Hotel Design Concepts
• Example Transit Schedule
• Turning Planet Dirt Into Rocket Fuel and Other Useful Things
• Technologies To Build Upon
• What’s The Best Architecture and How Much Will It Cost?
• Summary
The Interplanetary Rapid Transit (IRT) System

PHASE II STUDY CONTRIBUTORS

Global Aerospace Corporation
Dr. Kim M. Aaron
Dale R. Burger
Dr. Angus D. McDonald
Kerry T. Nock, NIAC Fellow
Dr. Paul Penzo
Chris Wyszkowski

Science Applications International Corporation (SAIC)
Alan L. Friedlander
Mark K. Jacobs
Jerry A. Rauwolf

Planetary Resource Utilization Consultant
Dr. Michael B. Duke, CSM Center for Commercial Applications

Purdue University
Dr. James Longuski
Joseph Chen*
Troy McConaghy*
Masa Okutsu*

Colorado School of Mines
Dr. Robert King
Dr. Michael B. Duke
Phobos Excavation
Dr. Robert King
Lee Johnson
Tim Muff
Senior Design Lunar Ice Excavator
Luke Anderson
Michael Martinez-Schiferl
Adrian Sikorski
Ryan Smelker
Craig Softley
Senior Design Mars Mining Rover
Dr. Robert Knecht
Dr. Dave Munoz
Misty Cates
Kim Fleming
Wendy Holland
Nicholas Kimball

Colorado School of Mines, cont.
Senior Design Carbothermal Reactor
Dr. Ron Miller
Dr. Colin Wolden
Mailasu Bai
Lindsey Barkley
Viki Cinstock
Katrina Britton
Jessica Clark
April Dittrich
Devin Dyar
Biljana Djoric
Oliver Eagle
Jon Elarde
Keith Gneshin
Michelle Manichanh
Chris Pitcher
Mark Still
Liz Townley
INTERPLANETARY RAPID TRANSIT (IRT) SYSTEM CONCEPT
Mars Base Systems

<table>
<thead>
<tr>
<th>System</th>
<th># of Units</th>
<th>Unit Mass, mt</th>
<th>Total Mass, mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Critical Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td>4</td>
<td>38.5</td>
<td>154.0</td>
</tr>
<tr>
<td>Washdown facility</td>
<td>2</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Mission Support Systems</td>
<td></td>
<td></td>
<td>155.8</td>
</tr>
<tr>
<td>120 kW Power Source (solar array @100W/kg)</td>
<td>2</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Power Management, Distribution and Maintenance</td>
<td>2</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Energy Storage (NRFC packages)</td>
<td>2</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Suitup/Maintenance Facility</td>
<td>2</td>
<td>1.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Pressurized Transporter</td>
<td>3</td>
<td>9.1</td>
<td>27.3</td>
</tr>
<tr>
<td>Open Rovers</td>
<td>3</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Inflatable Shelter w/Airlock</td>
<td>10</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Communication Satellites</td>
<td>3</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Crane</td>
<td>2</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Trailer</td>
<td>2</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Science and Exploration Systems</td>
<td></td>
<td></td>
<td>60.5</td>
</tr>
<tr>
<td>Base Laboratory</td>
<td>2</td>
<td>13.6</td>
<td>27.2</td>
</tr>
<tr>
<td>Mobile Laboratory</td>
<td>3</td>
<td>9.1</td>
<td>27.3</td>
</tr>
<tr>
<td>200 m Drill</td>
<td>2</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>10 m Drill</td>
<td>3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>UAV</td>
<td>3</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Robotic Rovers</td>
<td>10</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Weather Station</td>
<td>5</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Survey Orbiters</td>
<td>2</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>278.9</td>
</tr>
</tbody>
</table>
VISIONS, GOALS, ASSUMPTIONS AND REALITIES
A VISION OF THE FUTURE

• Permanent inhabitation of Mars by scientists and explorers occurs as quickly as financially feasible

• Earth-Mars transit system is created providing safe, frequent and affordable travel

• Reduced reliance on Earth for space activities

• Pathways are opened for exploration beyond Mars
SUGGESTED DEVELOPMENT GOALS OF A FUTURE TRANSIT SYSTEM

• Demonstrate physiologically feasible travel to and from Mars (zero-g, radiation protection)
• Minimize transit system life cycle costs
• Maximize use of natural resources
• Establish context for future human space exploration and development, space technology advance, and robotic missions
• Incorporate advanced technology to lower costs and make trips safer
KEY ARCHITECTURE STUDY ASSUMPTIONS

• Sustained Mars Base of 20 people that is self sufficient except for hardware
• Earth launch costs are $2,000 per kg to low Earth orbit
• Use solar energy for space and surface power
• Use space resources to make rocket fuels
• Use currently and clearly foreseeable technologies
• Transport crews and cargo in efficient steps with specialized vehicles
• An Earth-Mars transportation system will be expensive and will require
 – imagination to minimize costs,
 – significant and sustained political leadership and
 – international collaboration

• If used, space nuclear reactor system costs will be very expensive without DOD and/or commercial applications

• Launch costs will be an order of magnitude less when they are
ORBITAL TRACKS AND SPACE LINES
The Interplanetary Rapid Transit (IRT) System

CYCLIC ORBIT OPTIONS

Low-thrust Aldrin Cyclers

- Up and Down Cyclers, two Astrotels
- Gravity assist to rotate orbits to achieve 15-year repeating sequence
- Low-thrust guidance maneuvers
- 5 month trips to and from Mars
- High Taxi ΔV to leave Mars

Semi-Cyclers

- Three Astrotels on 78 month trips between Mars arrival and departure
- High-thrust Mars escape / capture
- Five Earth flybys between Mars departure and arrival
- 6 month crew trips to / from Mars
- 1.5 year Astrotel stay time at Mars

Stopover Cyclers

- Two Astrotels on near-minimum energy orbits
- Stops at Earth and Mars
- High-thrust escape/capture
- 4-7 month trips depending on opportunity and fuel loading
- 1.5 year Astrotel stay time at Mars
The Interplanetary Rapid Transit (IRT) System

HYPERBOLIC RENDEZVOUS TRAJECTORY GEOMETRY

Spaceport Position (3 Burn)

Planet

ΔV₁

ΔV₂

ΔV₃

Rendezvous

Astrotel Trajectory

Spaceport Position (4 Burn)

Spaceport Position (2 Burn)

Global Aerospace Corporation

KTN - Annual Meeting - June 12, 2002
USING THE ATMOSPHERE TO PUT THE BRAKES ON
The Interplanetary Rapid Transit (IRT) System

MARS AEROCAPTURE PROFILE

Entry
V = 11.5 km/s
\(\gamma = -10 \),
\(\alpha = -20^\circ \)

Entry Interface 125 km
Roll to modulate lift

Begin Aero-Cruise

In Orbit
V_{exit} = 4.4 km/s

Roll to reduce lift to exit

50-60 km Altitude

Scale Exaggerated

Aerocapture at Mars saves about 83 mt of fuel
10 crew, Earth / Mars aerocapture, 12 m diameter aeroshell (Elliptical Raked Cone), 16.1 mt vehicle dry
The Interplanetary Rapid Transit (IRT) System

TAXI AEROCAPTURE G-LOAD

- Taz’s Texas Tornado, 6-Flags, TX, 6.5 g
- Face/Off, King’s Is. OH, 5.0
- Revolution, 6-Flags, CA, 4.9 g
- Great White, Sea World, TX, 4.6 g
- Space Shuttle, 3.0 g
TAXI, SHUTTLE, TRANSPORT HUBS, AND HOTEL DESIGN CONCEPTS
KEY FEATURES

- Supports crew of 10 for 7 days
- Apollo accommodations
- G-aligned crew hammocks
- 7.2 mt including life support and power
- Taxi and Mars Shuttle vehicle versions
 - Mars Shuttle: No radiation shielding and minimal energy storage for <3 hour flights, add second airlock for Mars surface access
 - Taxi: Energy storage for 7 days, minimal radiation shield, single airlock
TAXI CONCEPT: LEAVING EARTH SPACEPORT

Crew Module

H₂ Propellant Tanks

Rocket Engines (Advanced RL-10 type, Extended Nozzle)

Taxi Dry Mass: 16.1 mt
Ion Engines
(Eight, 50 cm, 17 kW, 5000s)

Solar Array
(160 kW)

Cargo Pod

Hab Module

Astrotel Mass: 69.1 mt

TAXI DOCKING TO ASTROTEL
MARS SHUTTLE AT ENTRY

KEY FEATURES
- 10 crew
- Direct entry from Phobos orbit
- 10 mt cargo
- 17.9 mt vehicle (dry)

AEROBRAKE DESIGN
- 20 m diameter, Viking aeroshell shape, open back
- 30 deployable and stowable segments
- Al structure & honeycomb substrate, STS-type TPS
- Deployed at the Mars Spaceport
- Stowed before departure from Mars surface
MARS SHUTTLE LANDING
MARS SHUTTLE AFTER LAUNCH

Stowed Aerobrake

3 Rocket Engines
(Adv. RL-10 type, 2 req.)
The Interplanetary Rapid Transit (IRT) System

KEY ADVANTAGES OF ALDRIN CYCLERS

• Astrotels can take advantage of ion propulsions system (IPS) technology
• Astrotels never stop
• With IPS, one can incrementally increase the Astrotel capability over time with very little propulsion cost
 – Increase radiation shielding thickness
 – Incorporate artificial gravity if needed
 – Add redundant Taxi and/or escape vehicles
 – Grow a cache of repair hardware, propellants and consumables
TURNING PLANET DIRT INTO ROCKET FUEL AND OTHER USEFUL THINGS
TURNING NATURAL RESOURCES INTO ROCKET FUEL

- Moon --> Water from Polar ice
- Phobos --> O_2-bearing regolith
- Mars Surface --> Water-bearing regolith
- Spaceports --> Electrolysis of water to and/or storage of LH and LOX using solar energy
The Interplanetary Rapid Transit (IRT) System

SPACE RESOURCE PROPELLANT PRODUCTION SYSTEMS

Excavator
- Bucket wheel
- Scraper

Transporter
- Integrated with excavator
- Separate vehicle

Reactor
- Thermal extraction
- Carbothermal reactor
- Electrolysis
- Liquefaction

Storage
- Cryogenic
- Transfer

Global Aerospace Corporation
The Interplanetary Rapid Transit (IRT) System

PHOBOS/MARS BUCKET WHEEL EXCAVATOR SYSTEM DEVELOPMENT

Resultant Forces on Excavator
- Horizontally along the boom axis
- Vertically downward toward the ground.
MARS PROPELLANT PRODUCTION AND STORAGE FACILITY CONCEPT

1: Water Docking Port
2: Human (For Scale)
3: Water Storage Tank
4: Electrolyzer/Dryers & Dryer Radiators
5: Solar Arrays
6: Liquifiers & Radiators
7: LH Tank
8: LOX Tank & Docking Port

SCALE
2 meters (Approximate)

Mars Surface Cryogenic Propellant Depot

LLJ-9/01
TECHNOLOGIES TO BUILD UPON
TECHNOLOGIES TO BUILD UPON

- Human physiology and life support in space
- Automation and robotics
- Assembly and operations in space
- Aero-assist
- Ion propulsion systems
- Space resource mining, processing and manufacture
- Photovoltaic energy generation
- Fuel cell energy storage
- High-strength, lightweight structures
- Advanced Computers
- High-bandwidth interplanetary communications
WHAT'S THE BEST IRT DESIGN AND HOW MUCH WILL IT COST?
MISSION ARCHITECTURE MODEL AND ANALYZER (MAMA) DESCRIPTION

• MAMA is a tool to support trade study analyses of Mars Astrotel Concepts

• MAMA integrates multiple lower-level models enabling assessment of technology selection-definition impacts on an overall Mars Astrotel scenario’s life cycle requirements

• MAMA maintains a database of past runs to allow comparison of features from different Astrotel scenarios

• MAMA will use a multi-level approach for collecting inputs

MAMA is better for comparing different options than generating absolute cost estimates
Transportation Systems and Orbital Elements Outputs

Chart Outputs

<table>
<thead>
<tr>
<th>LUNAR/MARS BASES & ISRU TANKERS</th>
<th>IN SITU RESOURCE UTILIZATION (ISRU) SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST CONCEPT 1A</td>
<td></td>
</tr>
</tbody>
</table>

WBS Elements & Life Cycle Costs

- Master Equipment List
- ASSAULT维修
- Life Cycle Costs
- Flight System Development Costs
- Refurb HW Costs
- Initial HW Masses
- Refurb HW Masses

Delta-Y

\[
m_y = (MFX + C^*m_y^*MF3)^*MF1(A^*(1-MF1)+B^*MF1-C^*MF3+1)
\]

\[
m_y = m_y^*MF3/MF+m_y^*MF3
\]

- Mass of Propellant required at Mars every cycle (2.1/7 years)
- Total Mass of Propellant required at Mars for 15 year Cycle

- Mass of Propellant required at Phobos every cycle (2.1/7 years)
- Total Mass of Propellant required at Phobos for 15 year Cycle

MAMA Inputs and System Elements
The Interplanetary Rapid Transit (IRT) System

MAMA LIFE CYCLE COST OUTPUT

- Development & Launch
 - Adv Tech Dev
 - Adv Tech Testing
 - Flight System Design
 - Flight Subsys Fab
 - System Assy, Integ, Test
 - LV Ground Facility Proc
- Operations
 - Launch & Checkout
 - Orbital Assy, I&T
 - Startup Ops
 - SS Ops
 - Refurbishment Hardware
 - Disposal

* 15 Years

[M]
SUMMARY OF EARLY, ROUGH MAMA COST ESTIMATES

Development: ~$5B/yr for 10 years
Operations: ~$3B/yr

Assumes:
- Advanced Technology Development
- Flight System Development
- Launch (specific launch vehicle cost of $2000/kg)
- Operations (includes repair, refurbish, upgrade hardware & propellants/consumables)
- FY 2000 dollars
Select Architecture
- Low thrust Aldrin
- Semi Cycler
- Stopover

MAMA provides defaults for all inputs

View Results
- Details for Current Architecture Scenario
- Comparison of Multiple Scenarios from MAMA Database

Modify Level 1 Defaults
Sample Input Categories:
- NODES
 - Transportation Nodes
 - Transportation Node Locations
- ISRU
 - ISRU Propellant Production
 - Lunar Hydrogen?
 - Lunar ISRU Location
 - Phobos Water or Oxygen?
- Mars Surface Water?
- Mars ISRU Location
- Orbital Propellant Depot(s)
- INTER-NODE TRANSPORT
 - Earth/LEO
 - LEO/Earth Spaceport
 - Lunar ISRU/Earth Spaceport
 - Phobos ISRU/Mars Propellant Depot
 - Earth Spaceport/Astrotel
 - Mars Spaceport/Astrotel
 - Mars Spaceport/Mars Surface
 - Earth Spaceport/Earth Surface
- POWER GENERATION & ENERGY STORAGE
 - Large Surface Systems
 - Mobile Surface Systems
 - Space (zero-g) Systems
- PROPULSION
 - Ion Systems
 - LOX/LH2 Systems
 - Nuclear Thermal
 - Others(?)
- CREW ACCOMMODATION
 - Radiation Shielding
 - Artificial Gravity
 - Air/Water
 - Food
 - Crew Volume
 - Habitation Module
- AERO-ASSIST
 - Aeroshell Shape
 - Structure/TPS

Modify Lower-Level Inputs
- Provides visibility to lower-level model inputs and allows modification of selected inputs
- For more experienced users only
POSSIBLE MAMA STUDIES

- Different cyclic orbit options
- Alternative transportation nodes
- Solar vs nuclear reactor power
- No use of natural space resources
- Higher/lower launch costs
- ISRU aerobrakes
- Impact of cyclic orbit option on increased Astrotel mass for artificial gravity, increased radiation shielding, hardware & consumable reserves
SUMMARY
The Interplanetary Rapid Transit (IRT) System

SUMMARY

• The Astrotel interplanetary rapid transit system architecture:
 – Is cost effective because it reuses transit system elements
 – Uses natural space resources to produce low-cost propellants
 – Enhances human health and performance due to short trips
 – With Aldrin cyclers, can easily expand Astrotel to enhance system, and
 – Can rely entirely on solar power systems

• Concepts have been developed that could be utilized in robotic pathfinder exploration, high Earth orbit operations missions, and expedition phases of Mars exploration

• The tools developed during this study can be used to analyze and compare future technology and system options