
Ultra-Fast Laser-Driven Plasma for Space Propulsion

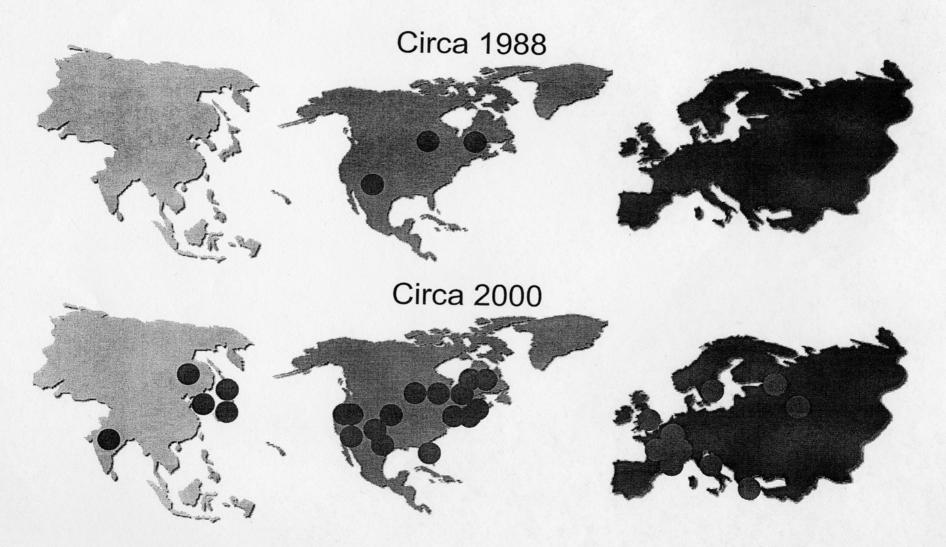
Terry Kammash
Nuclear Engineering and Radiological Sciences
University of Michigan
Ann Arbor, MI 48109

Presented at
4th NIAC Annual Meeting
June 11-12, 2002
Lunar and Planetary Institute
Houston, Texas

Demonstrating a technique that may lead to advances in certain forms of radiation therapy and electronics manufacturing, Livermore's Petawatt, the world's most powerful laser, impinges upon a target to generate 30 trillion protons from a tiny spot only 400 microns in size. Two other research groups, in Michigan and the United Kingdom, have demonstrated this technique with smaller-scale lasers.

Presentation Outline

- 1. Ultrafast lasers and charged particle acceleration
- 2. Underlying physics
- 3. Progress in Ultrafast laser research
- 4. Recent experimental results
- 5. The LAPPS propulsion concept
- 6. Phase II objectives
- 7. Accomplishments thus far
- 8. Nuclear Reactors for LAPPS
- 9. Conclusions and Future Investigations


- Recent Experiments at The University of Michigan and elsewhere have shown that Ultra-short Pulse [Ultrafast] Lasers can accelerate charged particles to relativistic speeds
- They have accelerated electrons and protons to more than 1 MeV
- They have accelerated Deuterons (in clusters) for Fusion Applications and for Nuclear Activation Applications such as B¹⁰(d,n) C¹¹. Also induced photon fission such as Au¹⁹⁷ (γ,n) Au¹⁹⁶
- Expect to accelerate protons to rest mass energies, i.e. to

$$v = 0.866c$$

Which would translate to

$$Isp=10^7 s$$

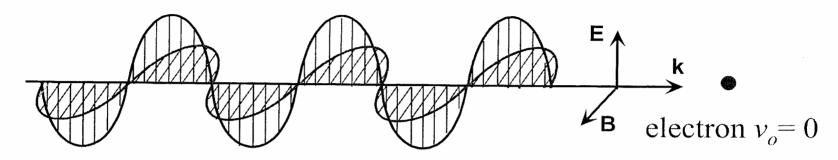
Ultra-High-Intensity Laser Labs

A ultrashort laser pulse with only 1 Joule of energy can accelerate an electron to an MeV in just a few microns

$$\frac{energy}{time} = power$$

$$\frac{power}{area} = intensity$$

$$\frac{1 \text{ joule}}{\text{sec}} = 1 \text{ watt}$$

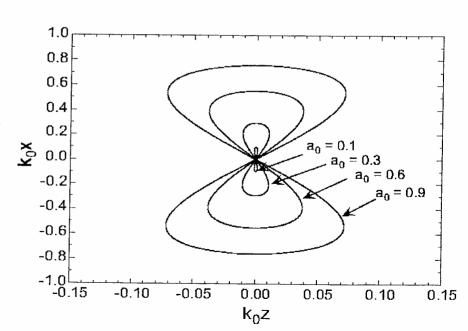

$$\frac{1 \text{ joule}}{\text{picosecond}} = 1 \text{ terawatt}$$

$$\frac{1 \text{ joule}}{\text{picosecond}} = 1 \text{ terawatt}$$

$$\frac{electric \text{ field (V/cm)}}{e(intensity)}^{1/2}$$

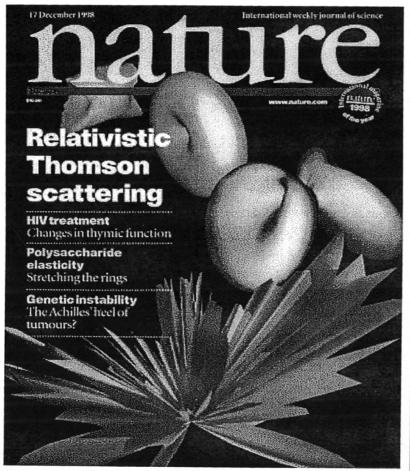
$$(10^9 \text{ V/cm}) \text{ X (10 microns)} = 1 \text{ megavolt}$$

Relativistic Electron Motion

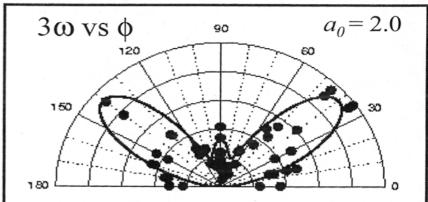

$$\mathbf{k} = k\hat{\mathbf{z}}, \quad \mathbf{E} = E_0 \cos(kx - \omega t)\hat{\mathbf{x}}, \quad \mathbf{B} = B_0 \cos(kx - \omega t)\hat{\mathbf{y}}$$

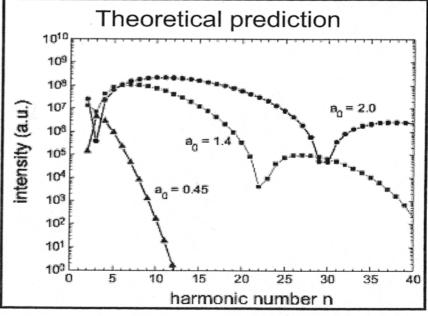
$$\frac{d\mathbf{p}}{dt} = \frac{d(\gamma m_0 \mathbf{v})}{dt} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right),$$

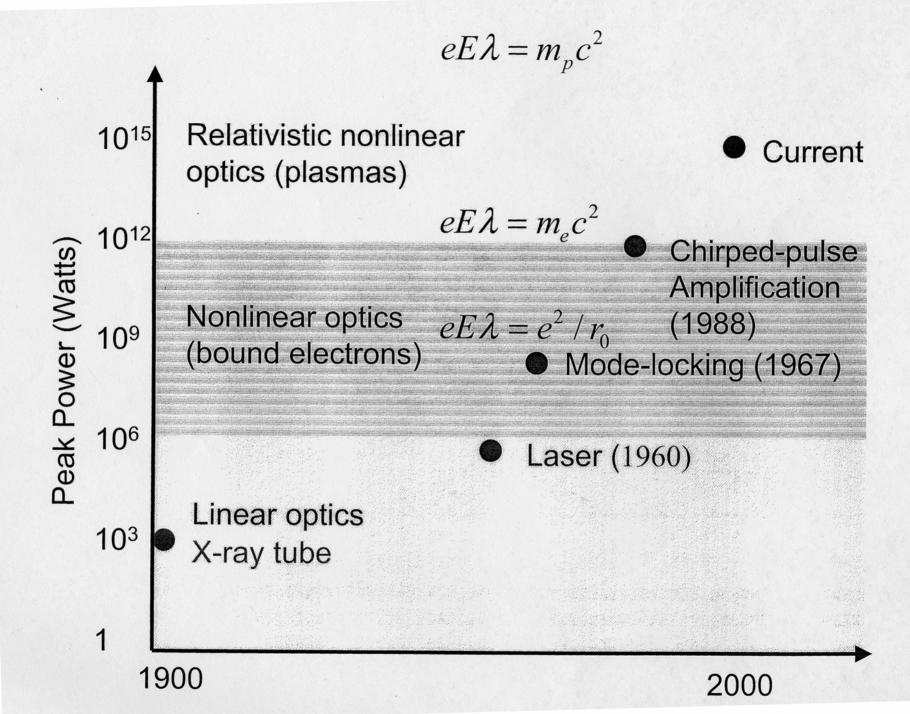
$$\gamma_{\perp} \equiv \left(1 - (v_{\perp}/c)^{2}\right)^{-1/2} = \left(1 + a_{0}^{2}/2\right)^{1/2}$$


$$a_{0} = \frac{eA}{m_{0}c^{2}}$$

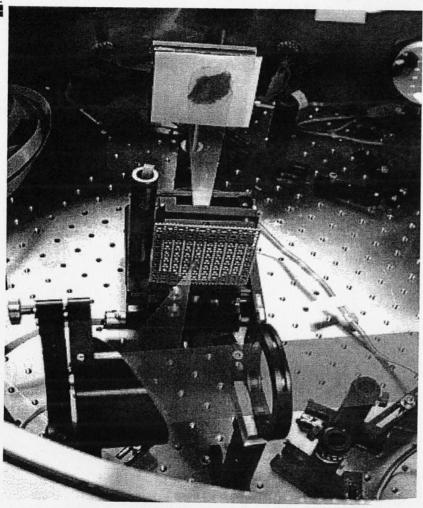
$$=0.85\times10^{-9}\sqrt{I(\text{W/cm}^2)}\lambda(\mu\text{m}).$$

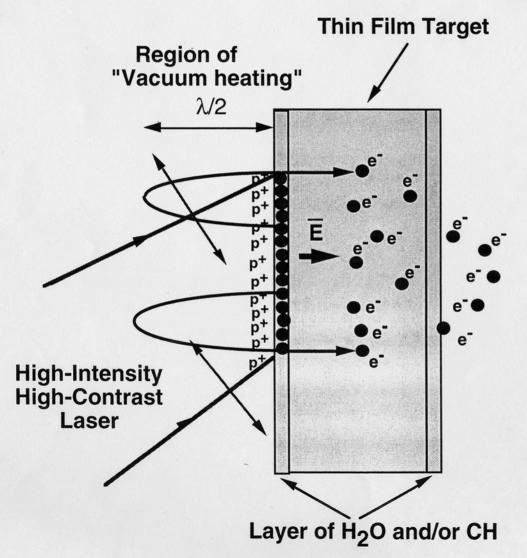





Experimental Confirmation

S. Chen et al., " Nature, 396, 653 (1998).




A Beam of MeV Protons

- $a_0 = 3.0$
- Cone angle = 40°
- Always normal to the target
- Front side origin
- 2π mm-mrad
- E ~ 10 GeV/cm
- $N > 10^{10} \, \text{p}$
- $J = 10^8 \text{ A/cm}^2$

Mechanism for proton acceleration

ion acquire an electrostatic energy:

$$\varepsilon_i \approx Ze\phi \approx Z\varepsilon_e$$

Solving equation for energy balance and Coulomb energy we can estimate:

characteristic electron density

$$n_e \approx n_c (a/2\pi) \sqrt{\eta 2\lambda/R}$$

and electron energy

$$\varepsilon_e \approx \pi a m c^2 \sqrt{\eta R/2\lambda}$$

Then characteristic ion energy is

$$\varepsilon_i \geq Z \sqrt{\eta IR \lambda}$$

Comparison of Recent Results

Institute	Energy	Yield	Laser		Target	Reference	
	(MeV)		(W/cm ² ,	J,	ps)		
U of Michigan	1	10 ⁸	3×10^{18}	4	0.4	Не	PRE 56,7042 (1999)
Rutherford	6		5×10^{19}	50	0.9	Ne	PRL 83 737 (1999)
	20	10 ¹²	5×10^{19} ,	50	1.0	Al	PRL 84, 670 (2000)
Rutherford	420		6633	6699	6633	Pb	PRL 85, 1654 (2000)
l L of Michigan	1. 5 (2ω)	10 ¹⁰	3×10^{18}	1	0.4	Al	PRL 84, 4108 (2000)
U of Michigan	10	10 ¹⁰	6×10^{18}	4	0.4	CD	APS-DPP (2000)
LLNL petawatt	50	10 ¹⁰	1×10^{20}	60,	0.4	CH & Au	PRL 85, 2945 (2000)
LLNL JanUsp	20		1×10^{21}	5	0.05		APS-DPP (2000)

- Relativistic Self-Focusing

For a focused laser beam with higher intensity on axis and lower intensity off axis in a plasma, the *Index of Refraction*, n

$$n = \sqrt{1 - \frac{w_P^2(\gamma)}{w_0^2}} = \sqrt{1 - \frac{w_{P0}^2}{\gamma w_0^2}}$$

$$w_{P_0} = \frac{4\pi n_n e^2}{m_e} = \text{plasma frequency}$$

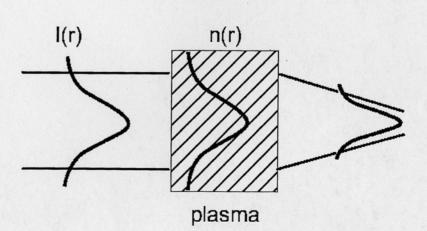
Wo= Laser Frequency

Will be higher on axis and lower off axis and plasma acts like a "lens". Hence what is known as "Relativistic Self-Focusing"

- Ponderomotive Self-Channeling

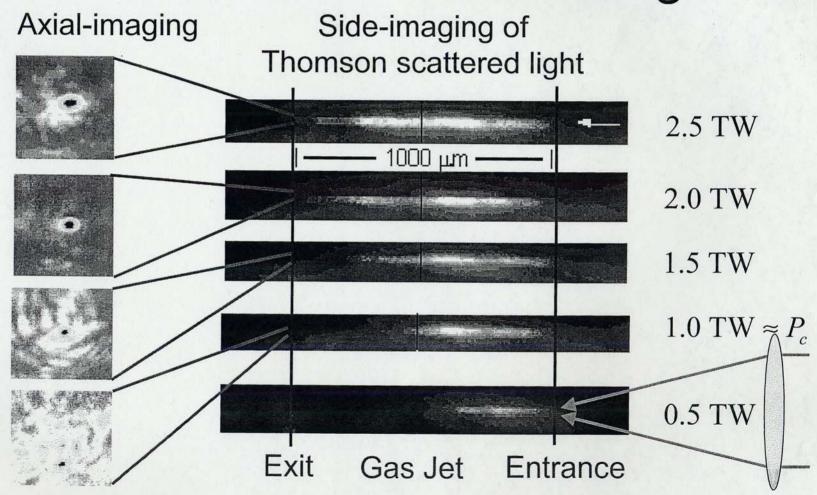
For a focused laser pulse with transverse laser *intensity gradient*, the transverse Ponderomotive force will push electrons outward and that results in a depression in electron density on axis. This makes *Index of Refraction*, n, higher on axis and once again the plasma acts like a positive lense and leads to self-focusing of the laser pulse. This is referred to as "Ponderomotive Self-Channeling"

Relativistic Mass Shift Affects Light Propagation in Plasma

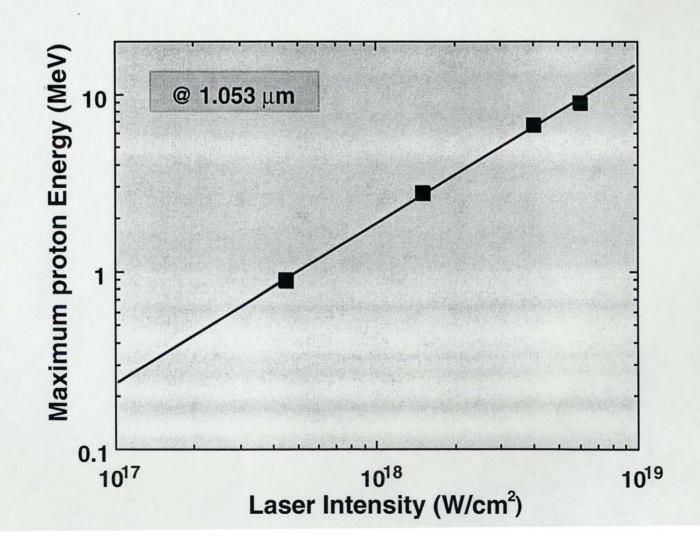

Plasma frequency:
$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_0}}$$

Index of refraction for light waves: $\eta = \sqrt{1 - \frac{\omega_p^2}{\gamma_\perp \omega_0^2}} \approx 1 + \frac{1}{2} \frac{\omega_p^2}{\omega_0^2} \frac{\langle a^2 \rangle}{2}$

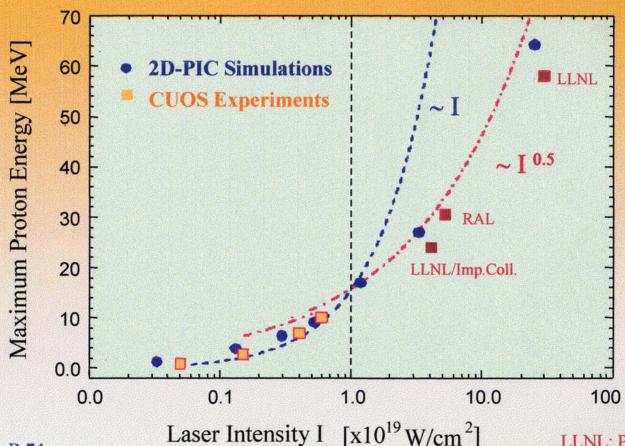
$$\Rightarrow$$
 Phase velocity, $v_{\varphi} = c\eta^{-1} \propto I$


Relativistic self-focusing:

$$P_c = 17 \left(\omega_0^2 / \omega_p^2 \right) \text{ GW}$$


Experimental Evidence of Relativistic Self-Guiding

S.-Y. Chen et al., Phys. Rev. Lett., 80, 2610 (1998).



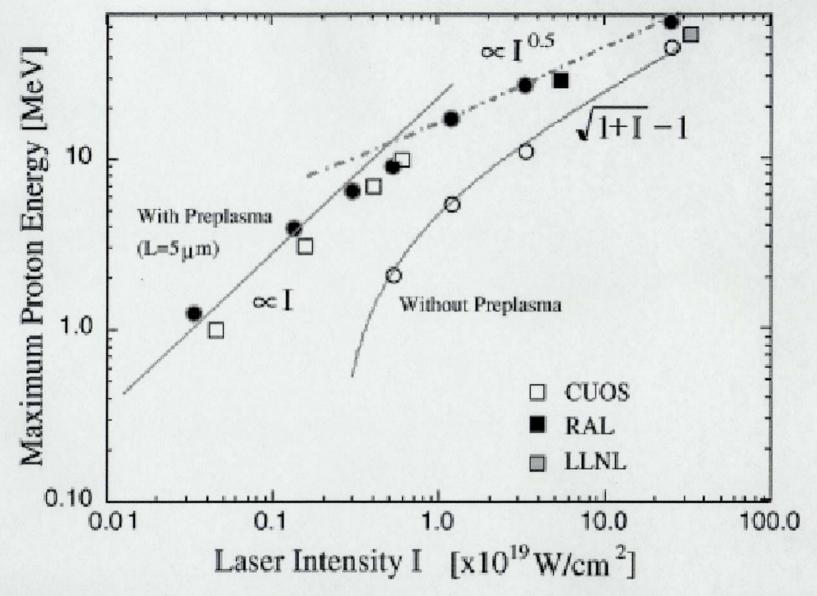
Maximum Proton Energy Scales Linearly with Laser Intensity

Scaling of maximum proton energy vs. laser intensity

2D-PIC: Appl. Phys. B **74**, 207 (2002)

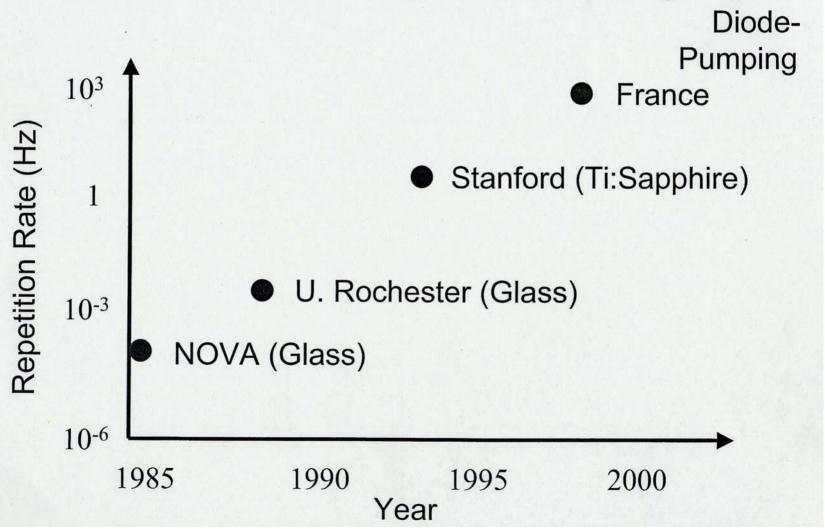
CUOS: PRL **84**, 4108 (2000); Appl. Phys. Lett. **78**, 595

(2001)

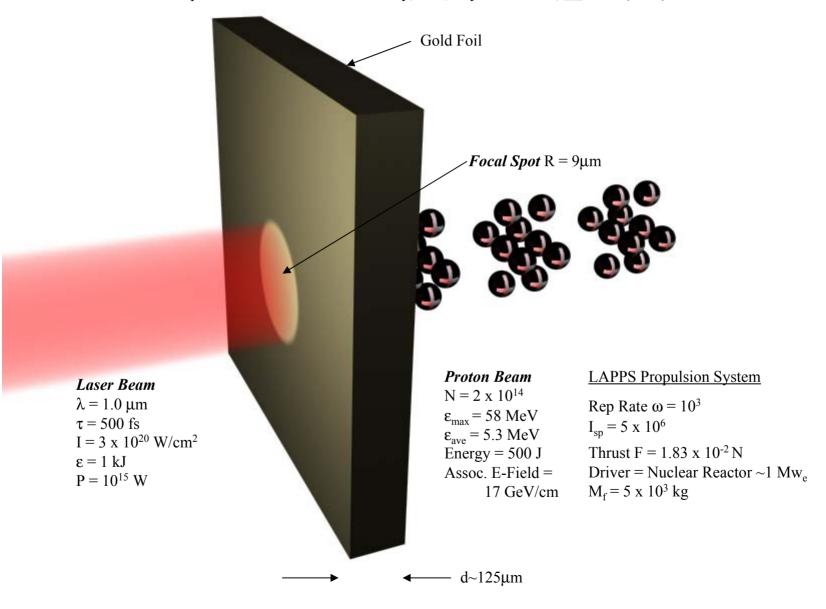

When the laser intensity is higher than 10^{19} W/cm² the maximum proton energy grows as $I^{0.5}$.

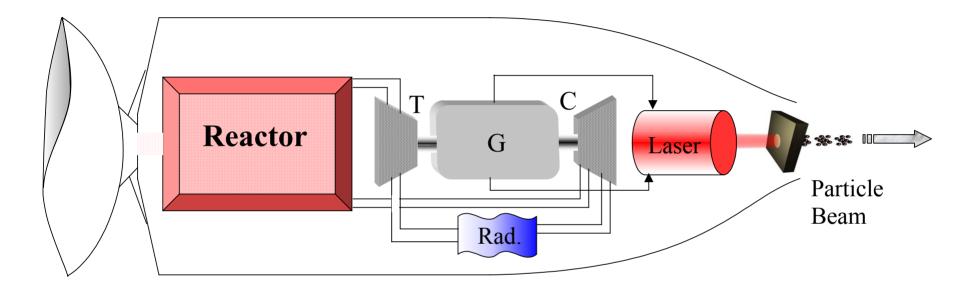
LLNL: PRL 85, 2945 (2000)

RAL: PRL 84, 670 (2000)


LLNL/Imp.Coll.:

PRL 86, 1769 (2001)


The intensity dependence of the maximum energy of protons (black dots) in comparison with the experimental data (squares): CUOS – [5], RAL – [13], and LLNL – [3], and simulations without preplasma (open circles)


Higher Duty-Cycle Terawatt Lasers: Better Signal Averaging

Laser Accelerated Plasma Propulsion System (LAPPS)

Recent Experimental Results - R.A. Snavely, et al, Phys. Rev. Lett., <u>85</u>, 2945 (2000).

Laser-Accelerated Plasma Propulsion System (LAPPS)

Design of 160 MW_e Nuclear Power System (Brayton)

(Lee Mason, NASA GRC) Masses in kg

System Sizing	Near Term		Mid Term		Far Term	
Reactor/Shielding		121978		102140		79593
(1) Reactor	115307		96163		74399	
(1) Inst. Shield	4923		4386		3694	
(0) Crew Shield	0		0		0	
(1) PHTs	1748		1591		1500	
Power Conversion		17433		15513		14749
(10) TAC/Ducts	182		182		181	
(10) Recuperators	916		805		775	
(10) Coolers	487		424		384	
(10) Structures	158		141		134	
Heat Rejection		110756		42080		8810
(1) Radiator	110756		42080		8810	
(1) Aux. Equip	0		0		0	
Power MGMT & Dist.		534155		161079		77157
(1) Electronics	234756		92061		34709	
(1) Radiator	83137		28696		25592	
(1) PL Rad.	57905		28953		14476	
(1) Cabling	158357		11370		2379	
Total		784322		320813		180309
Ratio	4.9 kg/kW _e =		2.0 kg/kW _e =	2.0	1.1 kg/kW _e =	1.1
	4.9 mT/MW _e		mT/MW _e		mT/MW _e	

EXAMPLES OF TWO MISSION

1. Fly-By Mission

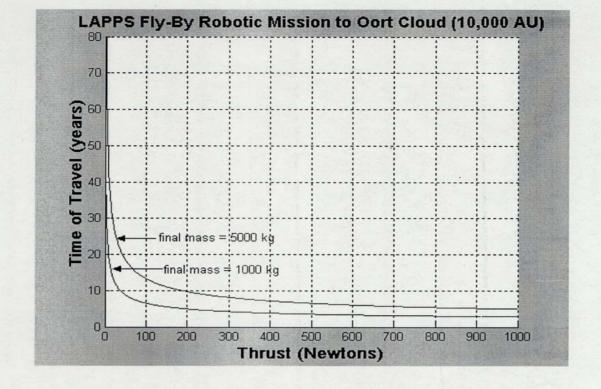
$$t_{\rm f} = \frac{M_{\rm i} - M_{\rm f}}{F} v_{\rm e}$$

 t_f = travel time to destination

 M_{i} Initial Mass

 $M_f = \text{final Mass (Dry Mass)}$

F = Thrust


 v_e = exhaust velocity

$$S_{\rm f} = \frac{M_{\rm i} v_{\rm e}^2}{F} \left[1 - \frac{M_{\rm f}}{M_{\rm i}} + \frac{M_{\rm f}}{M_{\rm i}} \ln \left(\frac{M_{\rm f}}{M_{\rm i}} \right) \right]$$

 $S_{\rm f}$ = distance to destination

$$V_{f} = V_{e} \ln \left[\frac{1}{1 - \frac{F_{t_{f}}}{M_{i} V_{e}}} \right]$$

 V_f = final velocity at destination Assuming starting from rest

Final Mass = 5000 kg:

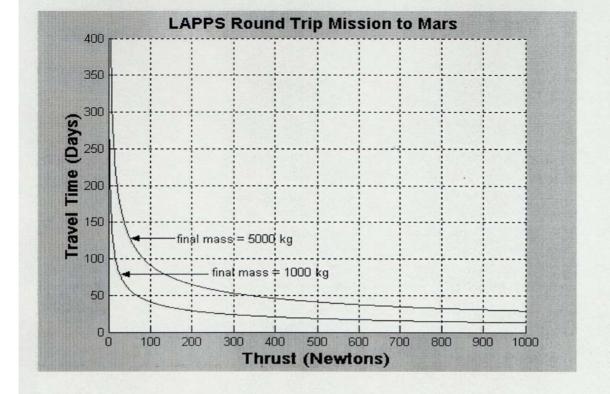
Thrust (Newtons)	Travel Time (years)
0.031	698.4
25	25.6
100	13.3
500	6.5
1000	4.9

Final Mass = 1000 kg:

Thrust (Newtons)	Travel Time (years)
0.031	312.97
25	12
100	5.5
500	3.4
1000	2.8

2. <u>Constant Thrust, Continuous Burn Acceleration/Deceleration Type of Trajectory</u>

$$\mathcal{T}_{RT} = \frac{4D}{g I_{sp}} + 4\sqrt{\frac{D M_f}{F}}$$


$$\tau_{RT}$$
 = Round Trip time

$$I_{sp}$$
 = Specific Impulse

$$M_f$$
 = Dry Mass

Note the additive effects of the two terms on the right-hand side of Equation

For Optimum τ_{RT} , the two terms must be somewhat comparable!

Final Mass = 5000 kg:

Thrust (Newtons)	Travel Time (Days)
0.031	5193
25	186
100	91.5
500	41
1000	29

Final Mass = 1000 kg:

Thrust (Newtons)	Travel Time (Days)		
0.031	2322.5		
25	82		
100	41		
500	18.5		
1000	13		

Objectives of Phase II

i) Experimentally validate the formula

$$E_i \approx Z_i \sqrt{\eta I R \lambda}$$

ii) Thrust Enhancement Approaches

F = W N M V

F = Thrust

W = Rep Rate

N = Number of ions in proton Beam

M = mass of proton

V = velocity of proton

Focus on $N = \Pi R^2 t$

Specificially on $N \sim R^2$

Experimentally Investigate variation of "N" with "R"

- iii) Enhance Rep Rate "w" on target side to match that on Laser side
 - a. solid target film spool
 - b. liquid jet target approach steady state
- iv) Address issues related to laser-plasma interactions e.g. relativistic focusing and Filamentation Instability
- v) Conceptual design of Nuclear reactor for use in LAPPS

Accomplishments Thus Far

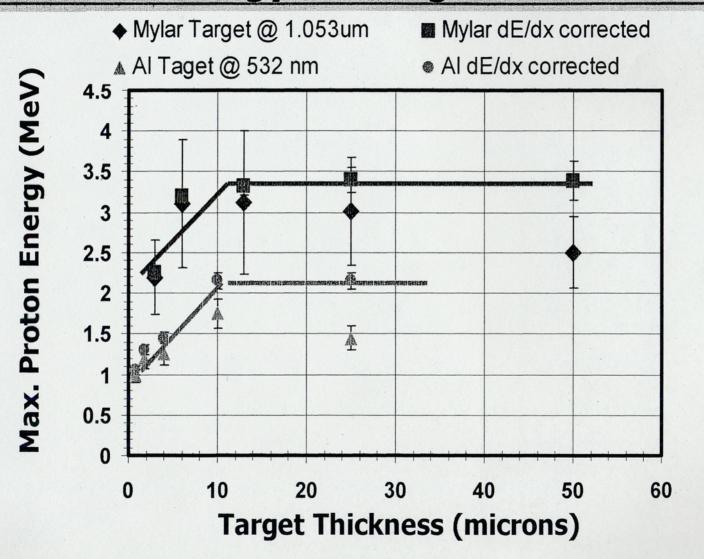
- i) Experimentally verified $E_i \sim \sqrt{I}$ at high Intensities as would be the case in a propulsion system.
- ii) Experimentally verified $E_{\scriptscriptstyle i} \sim \sqrt{\lambda}$, optimum target thickness $t \approx \! 10 \, \lambda.$
- iii) Experimentally established condition for filamentation Instability.

$$P = 5 P_c = 5 \left[17 \left(\frac{\omega_o}{\omega_p} \right)^2 G W \right]$$

$$\frac{4\Pi c}{\omega_p a_o} \le 2r_o$$

c = speed of light

 $a_o = 8.5 \times 10^{-10} \lambda [\mu m] I^{\frac{1}{2}} [W/cm^2]$


 ω_p = plasma frequency

 r_o = radius of focal spot

iv) Preliminary Conceptual design of space Nuclear Reactor for use in LAPPS. Likely fuel is cermet fuel with Am (242m) as fissile material due to its large thermal neutron cross section.

Proton Energy vs. Target Thickness

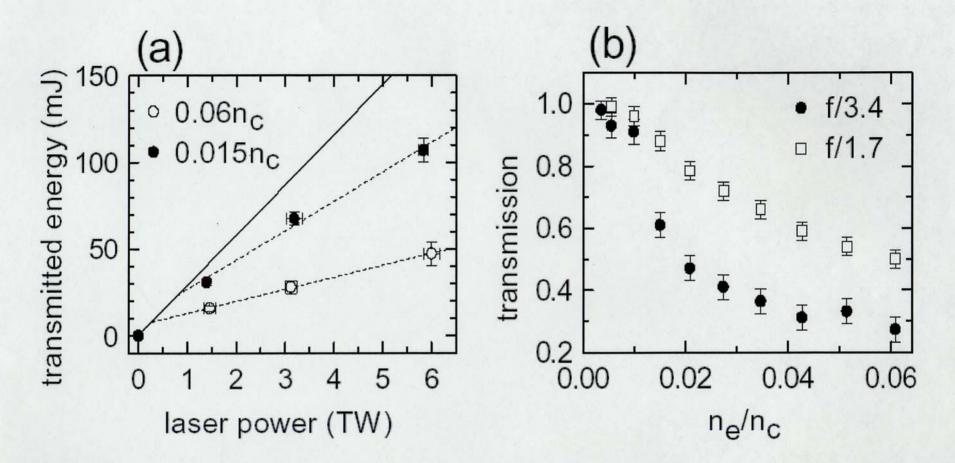
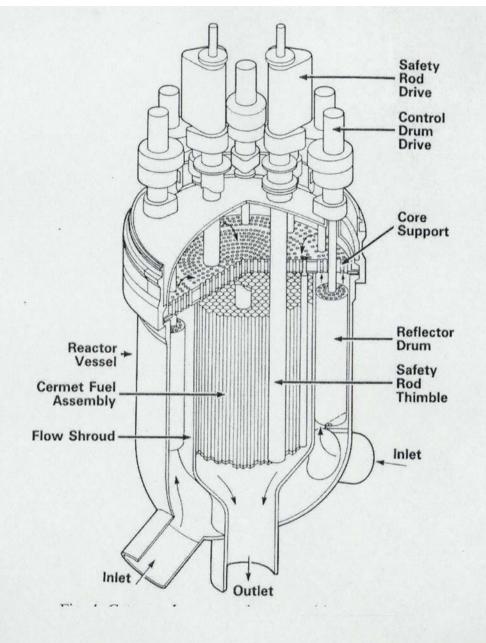
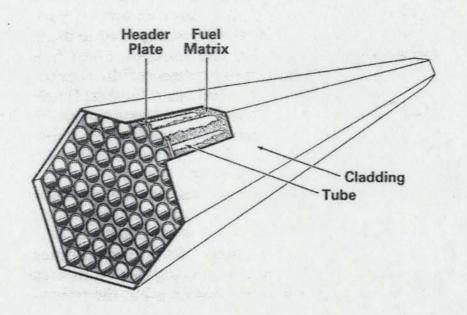




FIG. 1. (a) Energy transmission as a function of incident laser power. The solid line corresponds to 100% transmission. (b) Energy transmission as a function of plasma density for an incident laser power of 6 TW.

REPRESENTATIVE CERMET GAS COOLED CORE (OPEN OR CLOSED CYCLE)

TYPICAL CERMET FUEL ELEMENT SHOWING THE WRAPPER, COOLANT FLOW TUBES, & CERMET MATRIX MADE OF REFRACTORY METAL & FISSILE BEARING CERAMIC.

CERMET REACTOR SYSTEM FEATURES

- o--HELIUM-COOLED CLOSED CYCLE REFRACTORY CERMET FUELED SYSTEM
- o--BRAYTON CYCLE KNOWN TO PROVIDE 40% OR BETTER THERMAL EFFICIENCIES
- o—HELIUM IS A PROVEN WORKING FLUID WITH EXCELLENT HEAT TRANSFER AND MATERIAL (INERT) CHARACTERISTICS
- o--CERMET SYSTEMS PROVIDE EXCELLENT SAFETY AND PERFORMANCE FEATURES
- o—LARGE MARGIN OF SAFETY DEMONSTRATED FOR LAUNCH, REENTRY, AND TRANSIENT CONDITIONS
- o--RUGGED SYSTEM
- o--ALLOW EXTREME OPRERATING TEMPERATURES (Hence great efficiencies)
- o--EXCELLENT FISSION PRODUCT RETENTION
- o--PROMISE OF MANY (10's) YEARS OF OPERATION AT TENS OF MEGAWATTS & AT OVER 70% AVAILABILITY.

ACTIVE CORE MATERIALS COMBINATIONS, ACHIEVABLE TEMERATURES, & SAFETY CONDITIONS FOR CERMET SYSTEMS

Matrix /	Fuel	Performance	Peak Coolant	Basic Features
Clad	candidates	Characteristics	Temperature	
	Compatable			
	to Matrix			
W/W-Re	UO ₂ or	High Temperature	2250K	Subcritical when immersed in water
	$Pu^{\prime}O_{2}$ or	compatabilty to		Or burried.
	$Am^{242m}O_2$	2500K		
				BeO radial reflectors recommended
Mo/Mo-Re	UO ₂ or	High Temperature	2000K	Subcritical when immersed in water
	$Pu O_2$ or	compatabilty to		Or burried.
	$Am^{242m}O_2$	2250K		
				Be radial reflecors recommended.
Mo/Mo-Re	UN	High Temperature	1650K	Subcritical when immersed in water
		compatabilty to		Or burried.
		1900K		
				Be radial reflectors recommended.

REPRESENTATIVE DIMENSIONS AND MASSES OF POTENTIAL CREMET REACTOR SUB-SYSTEMS

ACTIVE CORE	FUEL	ACTIVE	REFLECTOR	VESSEL	OVERALL
MATERIALS	CERAMIC	CORE	(Be or BeO)	H and D	MASS (EST)
	At (85-92) %td		shell at		
			80%td		
Mo or W based	UO ₂ (97%	H=D	(10-12) cm	H=75	1800 Kg for W
	enriched)	=(39-40) cm		cm	and
				D=60-65	1600 Kg for Mo
				cm	
Mo or W based	Pu O ₂ (95% Pu-	H=D	(10-12) cm	H=65 cm	850 Kg for W
	239)	=(29-30) cm		D=50-55	and
				cm	730 Kg for Mo
Mo or W based	$Am^{242m}O_2$	H=D	(10-12) cm	H=40-	410 Kg for W
		=(19-20) cm		45cm	and
				D=40-45	320 Kg for Mo
				cm	

Conclusions and Future Investigations

- Ultrafast Lasers have been used effectively to accelerate charged particles to relativistic speeds.
- 2. Experiments at University of Michigan and elsewhere have produced proton beams continuing more than 10¹⁴ particles at mean energies of several MeV.
- Laser powers will be reached soon that will accelerate protons to rest mass energies. That translates to a specific impulse, I_{sp}, of about 26 million seconds.
- 4. A LAPPS (Laser Accelerated Plasma Propulsion System) device based on present day experimental data will produce an $I_{sp} \approx 3 \times 10^6$ seconds albeit at a thrust, F, of 3×10^{-2} Newtons. It will require a one MWe nuclear power system to drive it at an approximate mass of 5 mT.
- 5. If thrust can be enhanced to just 25 Newtons such LAPPS will make a fly-by robotic interstellar mission to 10,000 AU in about 26 years and a round trip to Mars in about 6 months.
- 6. Increase in thrust can be achieved using larger focal spots. Increase in Laser power will allow this if intensity (and correspondingly proton energy and specific impulse) is to be maintained.
- 7. For some missions large I_{sp} may not be required if sizable thrust can be produced. Hence, larger focal spots at lower laser power (hence lower in intensity) may be more desirable.
- 8. Large Rep Rates (~1 KH_z) may be necessary. Achieving such rates at the target side may require liquid jet targets or fast moving solid targets.
- 9. A Nuclear Fission Reactor will be needed to drive a LAPPS propulsion system. A reactor using cermet fuel containing Am (242m) with a half life of 141 years is being considered due to its relatively small size, small mass and safety features.
- Future investigations will address thrust enhancement approaches, fast moving targets, and nuclear reactor and power conversion systems for use in LAPPS.