Plasma-Pulsed Power Generation (P³G)

Clark W. Hawk
University of Alabama in Huntsville
March 25, 1999
Introduction

• Background
• Conceptual Design
 – Power Potential
 – Propulsion Potential
• Program Progress
 – Analysis
 – Experiments
• Summary
Mission Drivers

• Low Cost, Convenient Access to Space
• Rapid, Affordable Space Travel
 – Power --- “…a critical technology…space activities.” (“Space Technology for the New Century”, National Research Council)
 – Interstellar Transport
The P³G Concept

Induction Coils
Excitation Coils
Superconducting Shell
Detonation Chamber

Expanding Plasma (Chemical or Micro-Fusion Detonation)
Compressed Magnetic Field

radial flux compression generator

magnet coil
superconducting shell
generator coil
detonation driven plasma armature

UAH
The University of Alabama in Huntsville
P³G Power Potential

D-He³
50% coupling efficiency
100 Hz pulse rate

fuel consumption rate (gram/sec)

burnup fraction, \(f_b \)

10 GW
5 GW
Mission Drivers

• Interstellar Transport
 – Propulsion -
 • Pulsed Fusion Thruster
P³G Propulsion Potential

Winterberg / Daedalus
Magnetic Compression Reaction Chamber

- magnetic field
- excitation field coils
- induction generator coil
- superconductor compression wall
- structural shell
- electrical power
- detonation target
- exhaust
P³G Propulsion Potential

specific impulse, $I_{sp} = V_{eff} / g_0 \times 10^6$ (s)

burnup fraction, f_b

charged particles only

D-He³

D-T

D-D
Research Drivers

• Plasma Containment

• Efficient Compression of Magnetic Field
 – Minimize Magnetic Diffusion Loss to Plasma or Wall
 – Type II Superconductor
P³G Progress (Analytical)

- Magnetic diffusivity (m^2/s)
- Magnetic diffusion time constant (s)

Superconductor Tube
- $d_i = 1.6$ cm
- $d_0 = 3.0$ cm

- Flux creep
- Flux flow

- Copper
- Brass
- Stainless steel

- Anticipated range
- Range for typical type-II superconductor

- (3 s)
- (50 ms)
P³G Progress (Experimental)

Test Cylinders:
- superconductor
- stainless steel
- aluminum
- copper
Summary

• P³G Addresses NASA Mission Interests
• P³G has:
 – High Power Potential
 – Possible Propulsion Applications
• P³G Analysis Shows:
 – Power Promise
• P³G Experiments Continuing
Acknowledgements

• Colleagues
 – Mr. Tony Robertson
 – Dr. Ron Litchford

• Students
 – Ms. Syri Koelfgen
 – Mr. Matthew Turner