Self-Transforming Robotic Planetary Explorers

Principal Investigator:

Professor Steven Dubowsky Massachusetts Institute of Technology

In Collaboration With:

G. Chirikjian, Johns Hopkins University

I. Hunter, MIT

Y. Ohkami, Tokyo Institute.of Technology

The Ultimate Space Exploring Robot

Surface of Generalized Planet

Traversing Varying Terrain
Obstacles

Climbing Steep Cliff Faces

Future Planetary Exploration Mission

Mars 2010 and Beyond

Martian terrain Map

Crossing Wide Ravines and Canyons

Assembling Structures
Fuel Extraction as a
Precursor to HEDS

Current Rover Limitations (2000 c.e.)

- Obstacles of 2x wheel diameter
- Gap crossing of 1/2x wheel diameter
- "Cliff" climbing of 2x wheel diameter
- No assembly capabilities

Rough Terrain Control

- In rough terrain, maximize traction
- The rover has two degrees of redundancy
 - We can "choose" wheel torques to optimize a metric, such as:
 - Traction
 - Power Consumption. . .
- We must also consider physical constraints
 - Actuator saturation
 - Tire/ground normal forces must be positive

Progression of Self-Transforming Planetary Explorers

2000

2010

2040

ROVERS

Discrete Components STX Hybrid System CTX
Continuous
System

Rover vs. STX

Self-Transforming Exploring Robot Concept (2010)

The STX c.2010

 Network of Node Elements

 Connected by Smart Deformable Members

Self Transformation

Rover vs. STX

Visualization of STX Embodiment

Rovers vs. STX

Visualization of STX

Research Roadmap

SYSTEM CONCEPT

RECONFIGURABILITY

- Geometric Changes
- Topological Changes

INTELLIGENCE ISSUES

- Genetic Algorithms
- Distributed Binary Control

ENABLING TECHNOLOGIES

SENSORS

- Chip Based Vision
- ConductingPolymer Sensors

STRUCTURAL

- Element Network
- Compliant Mechanisms
- Smart Deformable Members
- Embedded Actuation
- Intelligent Connections

ACTUATION

- Conducting Polymers
- Pneumatics
- Gel Polymers
- SMAs

Smart Reconfigurability

- Genetic Algorithms
 - Path Planning
 - ReconfiguringTopology andGeometry

Smart Deformable Members

- Generalized Robotic Appendage
- Large Motions
- Reduced Number of Moving Parts
- Lightweight
- Basis for future CTX Systems

SDM Physical Structure

Compliant Mechanisms

- No Moving Parts
- Lightweight
- Large Deformations

Conducting Polymer Actuation

Embedded Muscles

Conducting Polymers

- Actuation
 Sensing
 Signal Transmission

I. Hunter

SDM Connectors

- Parallel Physical, Power and Information Connections
- Embedded Conductor Polymers with "Active Hand Shake" to establish Connectivity

Bi-Stable SDM Latch Connection

Physical System

Discrete Actuation

Network of Binary
 Embedded Actuators

• Simplified Control Architecture

 Digital Computer Analogy

Configurations of a 3 Bit Platform Manipulator

G. Chirikjian

Planetary Robotic Explorer Timeline

2000

2010

2040

ROVERS
Discrete
Components

STX Hybrid System CTX
Continuous
System

STX

- Robustness
- Redundancy
- Increased Functionality
- Lightweight

State-of-the-Art Physical/Mechanical Connectors

NASDA (Y. Ohkami)

New Paradigm for Robotic Exploration

