The Mesicopter

A Meso-Scale Flight Vehicle for Atmospheric Research

Stanford University

Prof. Ilan Kroo, Dept. of Aero/Astro

Prof. Fritz Prinz, Dept. of Mech. Eng.

Graduate Students:

Sam Shomans, Rudolf Leitgeb, Shelly Cheng, Peter Kunz, Scott Bowie, Mike Holden

The Concept: Meso-scale Flight

- What is a meso-scale vehicle?
 - ◆ Larger than microscopic, smaller than conventional devices
 - ◆ Mesicopter is a cm-scale rotorcraft
 - ◆ Exploits favorable scaling
 - ◆ Unique applications with many low cost devices

- Objectives
 - ◆ Is such a vehicle possible?
 - ◆ Develop design, fabrication methods
 - ◆ Improve understanding of flight at this scale

The Concept: Applications

The Concept: Rotorcraft

- Why rotorcraft for meso-scale flight?
 - ◆ As Reynolds number and lift/drag decrease, direct lift becomes more efficient
 - Compact form factor, station-keeping options
 - ◆ Direct 4-axis control

Propeller + Wing

 Scaling laws (and nature) suggest cm-scale flying devices possible.

The Concept: Challenges

- Insect-Scale Aerodynamics
- 3D Micro-Manufacturing
- Power / Control / Sensors

Challenges: Aerodynamics

- Insect-scale aerodynamics
 - ◆ Highly viscous flow
 - ◆ All-laminar
 - ◆ Low L/D
- New design tools required

Challenges: Micro-manufacturing

- Efficient aero requires 3-D rotor design with 50 μm cambered blades
- Micro-motor design, construction
- Integrated power, electronics

Equipment at Rapid Prototyping Lab

Approach

 Advanced aerodynamic analysis and design methods

Novel manufacturing approaches

 Teaming with industry for power and control concepts

 Stepwise approach using functional scale model tests

Approach: Aerodynamics

- Navier-Stokes analysis of rotor sections at unprecedented low Reynolds number
- Novel results of interest to Mars airplane program
- Nonlinear rotor analysis and optimization code

Approach: Aerodynamics

- New results for very low Re airfoils
- Very thin sections required
- Maximum lift increases as Re decreases below 10,000

Approach: Rotor Optimization

- Chord, twist, RPM, blade number designed using nonlinear optimization
- 3D analysis based on Navier-Stokes section data
- Rotor matched with measured motor performance

Approach: Rotor Manufacturing

Approach: Micro-Motor Development

- 1mm diameter micro-motor constructed using SDM
- Fabrication complete, first spinning tests underway
- Initial rotor tests use 3mm brushless DC motor

Steps in micro-motor fabrication

Approach: Battery Technology

 New lithion-ion technology provides 130 mW hr/g -- will power prototype mesicopter for 30 min of flight.

 SRI partners developing "directwrite" battery under DARPA program. High energy density system integrated with small-scale structure.

Approach: Sensors / Controls

- Innovative passive stabilization under test at larger scale
- Micro-motor controllers in development
- Inter-chip communication concept studied by industry partner

Status

- 1.5 cm rotors designed, tested
- 4-Rotor concept constructed, initial tests complete
- Single rotor performance characterized using 3mm, 325mg motor, external power

Status: Initial Prototypes

- 4-Rotor design fabricated, assembled 3/18/99
- Initial tests successful

Status: Initial Prototypes

- Initial tests stabilized on pivot arm
- Weight excludes power and controller
- Current estimates suggest 1.5cm mesicopter can lift batteries, controller as well

Current Work

Rotor testing, optimization

Micro-motor development

Integration of power/motor controls

 Discussions with SRI, Intel, NASA on batteries, communications, sensor options

Continuing Work / Future Visions

- First flight of world's smallest free-flight powered aircraft imminent
- Program will lead to:
 - New manufacturing approaches and design tools for miniature devices
 - ◆ Fundamental understanding of smallscale flow for terrestrial or Mars aircraft
 - ♦ New generation of flight vehicles that act in concert to provide an unprecedented sensor platform