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Today’s talk

• Experiments to control hurricanes
• A different approach to weather 

control–not just hurricanes
• Based on the sensitivity of the 

atmosphere
• The same reason why it is so difficult 

to predict the weather!



5 Nov 2003, Atlanta 4

Conventional WxMod

• Rain enhancement
• Fog dissipation

– Cold fog – ice nuclei

– Warm fog – jet engines provide heat

• Frost prevention (Florida citrus)
• Hail suppression – ice nuclei
• Lightning suppression – chaff

Project Cirrus 1948
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Rain enhancement

• Cold clouds – ice nuclei
• Warm clouds – CCN; hygroscopic flares; 

brine spray
• Anthropogenic  aerosols and dust result in 

inadvertent WxMod
• Adding CCNs or ice nuclei can increase or 

decrease rainfall
– Too many and the drops are too small. Too few 

and there are not enough drops
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Critical Issues in Weather 
Modification Research
• New National Academies Report

– Committee on the Status and Future 
Directions in U.S Weather Modification 
Research and Operations, National 
Research Council 

– The prepublication online version:

– www.nap.edu/books/0309090539/html/
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Future WxMod

• Improved models, observations, and 
assimilation systems will advance to 
the point where forecasts are:
– much improved, and
– include an estimate of uncertainty

• Thus allowing advance knowledge 
that a change should be detectable in 
particular cases
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Theoretical basis

• The earth’s atmosphere is chaotic
• Chaos implies a finite predictability time 

limit no matter how well the atmosphere is 
observed and modeled

• Chaos also implies sensitivity to small 
perturbations

• A series of small but precise perturbations 
might control the evolution of the 
atmosphere
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Current NWP operational practice

• NWP centers have developed forecast 
techniques that capitalize on the 
sensitivity of the atmosphere

1. 4D variational data assimilation

2. Generation of ensembles

3. Adaptive observations
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NCEP spaghetti plot
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System components

1. Numerical weather prediction
2. Data assimilation systems
3. Satellite remote sensing
4. Perturbations
5. Computer technology
6. Systems integration
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Why hurricanes?

• Public interest: Threat to life and 
property

• History: Project Stormfury (1963)
• Sensitive to initial conditions
• MM5/4d-VAR: Available tools
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Iniki Simulation

750-hPa Relative Humidity
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Hurricane WxMod

• Energetics
– Biodegradable oil

– Pump cold water up to the surface

• Dynamic perturbations
– Stormfury: cloud seeding

– Space based heating
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Space based heating

• Solar reflectors: bright spots on the night 
side and shadows on the day side 

• Space solar power (SSP): microwave 
downlink could provide a tunable 
atmospheric heat source
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Cosmos 1 
solar sail
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NASA artwork by Pat Rawlings/SAIC
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Microwave spectrum

• Water and oxygen are the main 
gaseous absorbers
– H2O lines at 22, 183 GHz
– H2O continuum
– O2 lines at 60, 118 GHz

• Frequency and bandwidth control the 
heating profile
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Heating rates 
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Power requirements

• Heating rates calculated for 1500 W/m2

• Equal to 6 GW/(2 km)2

• Current experiments require similar heating 
rates over an area 100s times larger

• Longer lead times, higher resolution will 
reduce these requirements significantly
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Determination of perturbations

• Optimal control theory
• 4d-Var methodology baseline
• Modified control vector: temperature 

only
• Refined cost function: property 

damage
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Mesoscale model
• The MM5 computation grid is 200 by 200, 

with a 20 km grid spacing, and ten layers in 
the vertical

• Physics are either
– Simplified parameterizations of the boundary 

layer, cumulus convection, stratiform cloud, and
radiative transfer; or

– Enhanced parameterizations of these physical 
processes and a multi-layer soil model
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4D variational data assimilation

• 4D-Var adjusts initial conditions to fit 
all available observations during a 6 or 
12 hour time window

• The fit to the observations is balanced 
against the fit to the a priori or first 
guess from a previous forecast

• We use a variant of 4D-Var in our 
experiments
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Standard 4D-Var cost function

• J is the cost function

• P is the perturbed forecast

• G is the goal

– G is the target at t=T and 
the initial unperturbed 
state at t=0

• S is a set of scales

– S depends only on variable 
and level

• x is temperature or a wind 
component

• i, j, and k range over all the 
grid points

J = ∑xijkt [(Pxijk(t)–Gxijk(t))/Sxk]2
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Modified control vector

• Control vector can be restricted by 
variable and by geographic region
– Temperature only

– Locations far from the eye wall
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Refined cost function

• JD = ∑ijt Dij(t) Cij

• C is the replacement cost
• D is the fractional wind damage

– D = 0.5 [1 + cos(π(V1-V)/(V1-V0))]
• D=0 for V<V0 = 25 m/s

• D=1 for V>V1 = 90 m/s

– Evaluated every 15 min. for hours 4–6
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Relative
property
values
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Experiments
• Hurricane Andrew simulations starting at 00 

UTC 24 Aug 1992
• Initial conditions from an earlier 6 h 

forecast; NCEP reanalysis; bogus vortex
• 4d-Var over 6 h (ending 06 UTC 24 Aug); 20 

km grid; temperature increments only; 
simple physics

• Simulations for unperturbed vs. controlled; 
20 km simple physics vs. 7 km enhanced 
physics
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Unperturbed surface winds
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Unperturbed

4 way
winds

7 km20 km

Controlled
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Temperature increments
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Temperature increments
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Temperature increments
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Temperature increments
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Time evolution 00 UTC
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Time evolution 06 UTC
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Time evolution 12 UTC
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Time evolution 18 UTC
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Relative humidity 00 UTC
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Relative humidity 06 UTC
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Relative humidity 12 UTC
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Relative humidity 18 UTC
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Summary

• Perturbations calculated by 4d-Var
• Control path, intensity of simulated 

hurricane
• Power requirements are huge

– Higher resolution, longer lead times may 
help

– Very large scale SSP could meet the 
requirements 
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The future
• More realistic experiments: resolution, 

physics, perturbations
• Future advances in several disciplines 

will lead to weather control 
capabilities
– The first experiments will not be space 

based control of landfalling hurricanes!

• Can legal and ethical questions be 
answered
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end

• Contact:
– ross@aer.com

• Background: 
– R. N. Hoffman. Controlling the global 

weather.  Bull. Am. Meteorol. Soc., 
83(2):241--248, Feb. 2002.
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