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Four Levels of Inquiry
Concerning Biology and Mars

1. Planetary protection, contamination and
quarantine issues (NRC, 1992),

2. The search for life on Mars (Banin, 1989;
Banin and Mancinelli, 1995; Ivanov, 1995;

Koike et al., 1995; Biemann et al., 1977),

3. Human expeditions to Mars and
ecosynthesis (Meyer & McKay, 1984, 1989,

1995)

4. The terraforming of Mars, ecopoiesis
(Haynes, 1990; McKay, 1990; Haynes and

McKay, 1992; McKay et al., 1991, 1994;
Hiscox, 1993, 1995, 1998).
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ECOPOIESIS

Term introduced by Haynes and McKay

Terraforming = making another planet or
object in the solar system like Earth

Heating: (1) Greenhouse gases, (2)
Mirrors and smoke, (3) Ecopoiesis

Ecopoiesis = emergence of a living,
eventually self-sustaining ecosystem

Precedes terraforming
Required step: experimental ecopoiesis
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Starting Position: Robotic Lunar
FEcopotesis Test Bed

*Trenched,
depressed site

«Sealed in all

. . TELEMETRY
dimensions

T=-133t0+23°C

Inflatable dome
solidifies

«Sealed interior
controlled to Mars
atmosphere

GAS BOTTLE
(BURIED)

*Organisms &
chemicals added to \
artificial regolith

«Control and data
telemetry to earth




Robotic LLunar Ecopoiesis
Test Bed: an Architecture

1. Identify community of organisms. A symposium will be
held to develop a consensus concerning organisms to be
utilized in early experiments.

2.Develop preliminary chamber design. A detailed set of
drawings, with critical parts identified will constitute the
principal engineering activity of Phase I.

3. Identify partial-gravity venues and requirements.
Develop top-level logistics for accessing low-gravity
venues (on ISS) that are compatible with partial-
gravity, low-pressure hardware required for the on-orbit
experiments.

4. Develop scaling rules for test beds. Derive scaling rules
for gas concentrations, heat capacities, heat transfer,
light and radiation intensities, biomass and mechanical

properties
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Assume that 1nitial engineering efforts will increase

atmospheric pressure and maintain the same relative
abundances of gases.

°' .07¢
O, 0.13%
«CO 0.07%
«H,O 0.03%
«Trace amounts of Ne, Kr, Xe, O,

__ *No significant ozone layer
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How Dry is Mars?

4 Desert ecosvst*g

N .
Photochemistry Biology wins

wins, oxidizin? reducing e .
Shrybs and insects

Hypolithic algae

Life !
Soil Bacteria
Mojave Desert >
Mars-like soils -
«— Nitrate deposits —Gobi Desert
02 1 5 25 125 '

. C. P. McKay, 2004
Moisture mm/yr
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Pressure on the Mars Surface
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Temperature Cycles on Mars Surtface
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Liquid Water on Mars (Sometimes):

Critical point

Pressure
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A.C. Schuerger et al. MTearus 165 (2003) 253-276
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The main challenge for survival on the surface of Marsis
the UV radiation between 200 and 300 nm.
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Lighting: Temporal Stmulation

Integral at

mid-day is

about 590
W/m?
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Laboratory Chamber and
Subsystems Design Drawings

ENVIRONMENTAL

CONTROL UNIT

Outer housing controls st
temperature -130 to Liouip

NITROGEN

INSULATED
DOOR

+2 o ni r n SIPHON TANK | FULL SPECTRUM
6°C (d_ry troge \ G TN
cryogen IC) \ Y SPECIMEN

| CHAMBER
|

Sealed illuminator with
housing & cooling vents  jigun
Low-pressure “Mars Jar”

held at 7 --10 mbar

Atmosphere composition
analysis and control s ]
ATMOSPHERE \'\

Regolith simulant and castne
regolith sampling *
MARS ATMOSHPERE

Affordable product for s st
research laboratories AU ST LOWPRESSURE s ok

(OF A

VACUUM
LINE OUT

MULTI-PANE
WINDOW (UV SAFE)
WITH CURTAIN




[Laboratory Simulator Schematic

2 STAGE
REGULATOR
GAS BOTTLE —| CPU
200-800 PSI
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. QUARTZ JAR v O —| vAcuum
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CONTROL 1 , REGOLITH | : |:>
VALVE ; :
(open when 135 Ct035°C I CONTROL
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MARS-LTB Specimen Chamber

“Mars Jars”™

ENDCAP
ENDCAP QUARTZ

( CYLINDER

VACUUM
LINE OUT

MARS REGOLITH

=y SIMULANT
ATN}\éI)éIl}IiERE SPECIMEN

SAMPLE
GAS SUPPLY SPECIMEN

TUBE PORT CHAMBER
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Mars Regolith Simulant

Mars regolith simulants available
commercially

Santiam Mars-2 Soil Sim Santiam Sim Sifting System
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MARS-LTB
Regolith Sampling System

REGOLITH SAMPLE
PORTS REGOLITH

A double seal plunger inside a hollow tube.

*Regolith sample is pulled from the specimen - S |
chamber by inserting the tapered tip of the 1 1 = =8

plunger into the regolith.
-One seal remains inside the hollow tube. OTPLE SAMPLE PO

MULTIPLE SAMPLE PORTS

*Plunger is retracted with both seals inside the

hollow tube. HOLLOW TUBE
_~SEALA
*The regolith sample is translated inside the ” 3
hollow tube until the first seal exits the hollow — D
tube. / ‘\‘* : TL;I\PERED
SEALB™  REGOLITH END
. . . . . SHAFT SAMPLE
*Regolith sample is deposited into the airlock DETALL OF DOUBLE

area, ready for further study. SEAL PLUNGER
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Modular Ecopoiesis Test Bed

eControlled volume = 80 cc

eSeveral simulators per
recharge station

\ Mars Atmosphere And

Regolith Simulator-
Modular Test Bed

— _— MARS-MTB

eTemperature -80 -- +26°C

RECHARGE
STATION

eSHOT-designed computing
hardware and software

eThermoelectric cascade
eSolar spectrum simulator
eClassrooms and labs

ePatent applied for



Summary of Requirements
for Pioneer Martians

Anaerobic

JV resistant

_LOW pressure
Drought resistant
-reeze resistant
Phototroph

Nitrogen fixing
C. McKay, 2004




Physiological traits of engineered
martian organisms (“Marsbugs™):

« Reactive oxygen tolerance (superoxides, peroxides, ozone,
etc.).

« CO, tolerance.

 Intracellular acidification tolerance.
 (Carbonate dissolution.
* (Osmotic tolerance and adaptation.

« Ultraviolet radiation resistance and repair.

« “Switchable” genes for nutrient cycling (e.g., N-fixation,
denitrification). (Hiscox and Thomas, 1995)
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Candidate Extremophiles

Radiation Deinococcus radiodurans
Hyperbaric/Anaerobic Bacillus infernus
High saline Haloferax volcani (Searles Lake)
Vacuum Streptococcus mitis
Sulfurous environment Thiobacillus sp.
Low temperature Anabaena,other cyanobacteria
Spore dormancy Bacillus subtilis

High temperature not relevant
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Halobacterium Adaptation to DNA-
Damaging Conditions

»  Avoidance
»  Phototaxis using buoyant gas vessicles (from blue light towards
orange light)
> Protection
» UV shielding: salt crystals, pigments (rhodopsins, carotenoids)?
»  Adaptation

»  Internal salt equilibrium, acidic proteins, scavenger molecules
for reactive oxygen species

> Repair
»  All known and conserved DNA repair systems
~  Prokaryotic-type SOS repair system? Other novel systems?

Prof. Jocelyn DiRuggerio
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Halobacterium is Highly Resistant
to Desiccation and High Vacuum

= Desiccation
= VVacuum 10 Pa

2 6 10 15 20

Days
N=number of viable cells in challenged sample; No = number of viable cells in control; Error bars
epresent standard deviation for 3 replicates.
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Halobacterium is Highly Resistant
to ®°Co Gamma Irradiation
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Halobacterium and Mars

Advantages: Challenges: Possible Uses:
~Resistant to ~Nutrient source? | ~Genetic
extremes in cold, engineering
desiccation, ~Liquid water? ~E.g. Genes for
vacuum, gamma | ~Halophilic resistances into a
and UV radiation | autotrophs? primary producer

~Problem of
acidic residues in
proteins

»Facultative
anaerobe

»Model System »Secondary

colonizer
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Permafrost

Ice Caves

Cryoconites ICY Habitats

Basal melt springs
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What do microbes do to rocks and minerals?
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Microbial "Cave Corrosion”
(Speleosols)

Microoial oxidation Cave
Fef-sred
MnF =M™

microbes

‘.l’f{.t " K ) Air/Rock
 Dro fl K ) Interface

Chelation of
Fe and Mn? by --

organic ligands & o0 “o chelating
Acids @an+" @Fezhﬁ I
S igand
e ——-
Carbonate lr
C M Mn2* |= 2)CO,
dissolution by (CaMaMr™.FeRC0: Wall rock

organic acids s H@I




Anabaena species

e Common freshwater and marine
genus.

e Filamentous.
* Mesotrophic.

« Well-studied genetics and
physiology.

 Nitrogen fixation in heterocysts

Dr. DavidThomas
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Chroococcidiopsis

* Primitive cyanobacterial
genus.

e Unicellular, multicellular.

 Capable of surviving in a
large variety of extreme
conditions: aridity,
salinity, high and low
temperature.

* Sole surviving organism
in hostile environments.

e Often endolithic.



High % CO, tolerance

—
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CO, effects on Synechococcus. Synechococcus responds to high CO, similarly to Anabaena.
PS-II activity increases at 20% CO,, but is inhibited at 40-100% CO,. At 100%, the
photosystems do not recover after 24 hours in air (n = 4, bars = s.d.).

o7




Phase 111

Build 0.08 liter chambers for ADF
centrifuge & perform physical tests

Build Modified Avian Development
Facility (ADF) to include cryogenics
and up to 4 low-pressure jars

Install Modified ADF on ISS and
operate rotors at 0.38 g with
analytical capability

Test pioneer communities in MARS
MTB chamber, 0.38 g




Potential .ow-g Simulator on ISS

CENTRIFUGE = MARS-MTB

eBuilt on SHOT Avian
Development Facility
Foundation

eDouble mid-deck
locker

eHouses one or more
modular test bed

N L3 3 #
®
g &
&
o
N o
]
STIRLING COOLER =
RESERVOIRS N " LOUBLE
LOCKER

(SUPPORT ELECTRONICS)
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Concept Proposed for RLEP

eTest chamber
same as

laboratory test =
bed M TELEMETRY

| —— POWER ARRAY FOR

® M ars g as %/ LOUVRES & TELEMETRY
pressure reservoir LOUVRES

at 1 O ECOPOEI.ESDIS TEST
atmospheres ﬂ <f Tj/

el ouvres for light
and temperature ONLUNAR SURFACE

control SH@I




PROGRESS ON MIL

CSTON]

.
S
-

Phase I completed; laboratory test bed
design, extremophile selection initiated

Phase I articles for publication
Laboratory test bed purchases, venue
Modular portable test bed proposed
Low-volume lunar test bed proposed
Science AdvisoryCommittee established
First bimonthly report submitted

Phase II presentation
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The EcopotesisTeam

Paul Todd, Principal Investigator

Penny Boston, Co-Investigator (lithotrophs)
David Thomas, Co-Investigator (cyanobacteria)
Nathan Thomas, EE, Project Manager

Bi
Jo
Bi

| Metz, MET, Mechanical design
nn Phelps, EET

| Johnson, Software Engineer

Alan Constance, ME, Thermal Engineer
Lara Deuser, ChE, Lab Scientist
Heidi Platt, ChE
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