The Origin of Life and Spaceflight Biospherics

Zach Adam
University of Washington

Advisors:
Dr. Adam Bruckner,
Dept. Chair, Aero/Astronautics Engineering

Dr. Roger Buick,
Professor, Earth and Space Sciences/Astrobiology
Presentation Overview

• Introduction
• Origin of Life
 – Old and New Theories
 – Implications
• Chemistry and Physics of Reaction
• Spaceflight Biospherics
 – Integration of Concepts
 – Implications
• Summary
Introduction

• Premises
 – Manned exploration: prohibitive technology is biospheric-, not launch-related
 • No excessive dependencies, no excessive launches
 – Origin of life is relevant; useful
 • Abiogenic production of organic mono- and polymers
 – Abiogenic processes liberate spaceflight logistics from Earth refueling dependencies
 • Life originating here yields life thriving there
Origin of Life

• Many theories; no definitive proof
 – Miller-Urey (lightning synthesis)
 – Sagan (infalling meteor shock synthesis)
 – Panspermia (extraterrestrial material/biota)
 – Cairns-Smith (crystalline mineral catalysis)
 – Waschterhauser (chemolithotrophic catalysis)
New Theory- Radiolytic Synthesis, Organic Takeover

- Life has a terrestrial origin
 - Radioactive decay provides energy impetus
 - Mineralogical associations provide elements and molecules as nutritive resources, helpful catalysts
 - Environmental (geological + atmospheric) setting provides effective reaction matrix
 - Localized production site provides recombinant reaction processes and diversification of reaction yield
Chemistry/Physics – Homolysis

• Basics of Homolysis:
 – Low-entropy energy bombardment (Initiation)
 – Extremely reactive free radicals w/unpaired valence electrons (Propagation)
 – Radical recombination and product yield (Termination)
Chemistry/Physics – Energy (1)

- Many energy sources possible
 - Chemical, radiative, electrical, thermal, etc.
- \(E = U - TS \)
 - \(E \) = Helmholtz free energy [J]
 - \(U \) = Total input energy [J]
 - \(T \) = Temperature of reaction [K]
 - \(S \) = Entropy of reaction [J/K]
- Decrease \(T \), decrease \(S \), or increase \(U \) to increase \(E \), the ‘useful’ energy left to do productive work (under optimal conditions)
Chemistry/Physics – Energy (2)

- Energetic considerations

- Entropic considerations

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy (cal/cm²/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunlight (all wavelengths)</td>
<td>260,000</td>
</tr>
<tr>
<td>Electric Discharges</td>
<td>4</td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>4</td>
</tr>
<tr>
<td>Radioactivity (to 1.0 km depth)</td>
<td>0.8</td>
</tr>
<tr>
<td>Volcanoes</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Source: Miller and Urey

<table>
<thead>
<tr>
<th>Form of Energy</th>
<th>Entropy Per Unit Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational Energy</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear Energy</td>
<td>10^-6</td>
</tr>
<tr>
<td>Internal Heat of Stars</td>
<td>10^-3</td>
</tr>
<tr>
<td>Sunlight</td>
<td>1</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>1-10</td>
</tr>
<tr>
<td>Terrestrial Waste Heat</td>
<td>10-100</td>
</tr>
<tr>
<td>Cosmic Microwave Radiation</td>
<td>100-1000</td>
</tr>
</tbody>
</table>

Source: Van Nostrand’s Sci. Encyclopedia
Chemistry/Physics - LET

- **Linear Energy Transfer** – $L = \frac{dE}{dx}$
- Not all radiolytic sources equal
 - Alpha: high-LET
 - Beta, gamma: low-LET
 - Physics are stochastic, but net effects are quasi-predictable
 - Bragg Curves, radiobiological treatment

Source: LET Physics, ICRU Pub.
Spaceflight Biospherics

• Current reference designs:
 – Initial resources, subsequent replenishment
• Recycling is significant, but so far insufficient for biospheric independence
• Current ISRU techniques produce useful inorganic molecules
• New concept: Origin of life processes yield organically assimilable ISRU products
Implications

- Abiogenic production of (extraterrestrially) exotic monomers and polymers
 - Trophic support for primary (and secondary, tertiary?) members of enclosed biosphere
 - Limited production of mechanically-valuable inorganic monomers and polymers

Closed-system recycling
+ abiogenic molecule production
= independent biosphere
Spaceflight biospherics

Cosmic, nuclear technology radiation

Bombardment

Ionization and Recombination (Protection)

Extraction, Separation, and Storage

Biological Assimilation

H₂O → CH₄ → HCl → Alcohols → Alkenes

NH₄Cl → CO₂ → C₂H₆ → Alkanes → Aromatics → Secondary Amines

? → Extraction, Separation, and Storage
Conclusions of Research

• Corpuscular radiolytic reactions were not proven unfeasible; *but* feasibility requires testing
• Immediate experimentation (new and old theories)
 – No origin of life constraints
 – Wide array of reactants and catalysts
 – Industrialize process
• Proposed device can be multifunctional when integrated with current designs
• Proposed device could revolutionize methods of extraterrestrial survival, and hence methods of exploration, *enabling colonization*.
Summary

• Biospheric independence leads to reduced overall mission costs, increased flexibility
• Origin of life studies can enable greater understanding of artificial biospheric generation and stability
• Research indicates homolytic processes could revolutionize space survival by protecting crew, and stabilizing biosphere through regenerative organic energy input
End of Presentation

Special thanks- NIAC/USRA

Contact Information:

Zach Adam, Graduate Student
University of Washington
Dept. of Aero/Astronautics Engineering
voodrbar@u.washington.edu