Global System For Monitoring Earth Radiation Balance

Presentation to NIAC Fellows Meeting
19 October 2004
Seattle, WA

Aaron Buys, John Vander Weide, and Llian Breen
Dr. Matthew K. Heun

Calvin College, Grand Rapids, MI
Outline

- The Problem
- The Context
- Proposed Solution
- ACR Theory
- ACR Design
- Preliminary Results
- Project Objectives
The Problem

- Need accurate measurements of Earth’s radiation for
 - Weather Models
 - Earth Radiation Balance
 - Global Warming Questions

www.whrc.org/globalwarming/scientificevidence.htm
Global Radiation Balance

- Monitor radiation
- Reduce data uncertainty

EARTH'S ENERGY BUDGET

- Incoming solar energy: 100%
 - Reflected by atmosphere: 6%
 - Reflected by clouds: 20%
 - Reflected from earth's surface: 4%
 - Absorbed by atmosphere: 16%
 - Absorbed by clouds: 3%
 - Conduction and rising air: 7%

- Radiated to space from clouds and atmosphere: 64%
- Radiated directly to space from earth: 6%
- Radiation absorbed by atmosphere: 15%

- Absorbed by land and oceans: 51%
- Carried to clouds and atmosphere by latent heat in water vapor: 23%
Existing Technology

- Satellite Based Measurements
- Extrapolate to 35 km
- Uncertainty in Results
Benefits of Direct Hemispherical Measurements at 35 km

- Reduce sources of modeling uncertainty
- Less modeling of vegetation and albedo
- Ground truth for satellite results
Scientific Balloons Fly at 35 km

- Current Balloon Development
 - NASA flies balloons (<21 days)
 - Under development now
 - Ultra long duration balloons
 - 100 day flights
 - Future
 - 1–10 year flights
 - “Permanent” station at 35 km

- Could Carry ACRs

http://www.gsfc.nasa.gov/goddardnews/20031107/smex.html
ACRs on Stratospheric Scientific Balloons
Possible Future Stratospheric Balloon Networks

- 383 platforms (35 km)
- StratoSail® TCS (20 km)
- Control
 - Biological analog control algorithm
 - 15° to pole
 - Maintain uniform coverage
- 1 year
- 173,000x real time
- UKMO data

Simulation courtesy of Global Aerospace Corporation

Legend
Red = balloon position
Yellow = 2° elevation angle view zone
Green = zone overlap
ACR Theory

- Active control of cavity temperature
- Variation of outgoing radiation
 - Warmer scene, less heater power
 - Colder scene, more heater power
ACR – Internal Reflection

- Cavity Shape Encourages absorption
- Approximates a “Black” Body
 - 100% absorption
 - 100% thermal radiation
 - 0% reflection
ACR Design Issues

- Thermal Management
- Cavity Geometry-size, shape, aperture
- Cavity Temperature Control
- Cavity Calibration
ACR Design- Mechanical Systems

- Cavity geometry design
- Thermal Management
 - Cavity temperature control
 - Cavity temperature distribution
- Weather balloon interface
ACR Design - Electrical Systems

- Power and heater system
- Feedback system
 - Digital or analog
 - PI, PID, or other servo mechanism
- A/D and data storage
- Data transmission
Continuing Calvin College Senior Design Project

- **Initial Project Development (03-04)**
 - Project Proposal
 - Demonstration ACR Prototype

- **Project Continuation (04-05)**
 - Finalize ACR Prototype Design
 - Demonstration of Concept Balloon Flight
Initial Project Development (03-04)

- Thermal Model for cylindrical cavity design
 - Algor© Finite Element Model
 - Numerical Model of Thermo-Electric System
03-04 Prototype Development

- Implementation of PID temperature control
- Prototype ACR constructed
Prototype Calibration

Active Cavity Calibration Curve

Experimental Data
2004-05 ACR Objectives

- Thermal redesign of ACR cavity
- Electrical controls finalization
- Construct flight ACR’s
- Interface mech/elect with weather balloon radiosonde
- Demonstration of concept balloon flight with weather balloon

[Image: www.rsmas.miami.edu/rccl/balloon.html]
Design Comparison

<table>
<thead>
<tr>
<th></th>
<th>2003-04</th>
<th>2004-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>0.67 kg</td>
<td>< 0.5 kg</td>
</tr>
<tr>
<td>Surface Density</td>
<td>-</td>
<td>3 oz/in²</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>< 1.0 W</td>
<td>< 0.5 W</td>
</tr>
<tr>
<td>Power Source</td>
<td>AC line</td>
<td>Battery</td>
</tr>
<tr>
<td>Environment Temp</td>
<td>300 K</td>
<td>>240 K</td>
</tr>
<tr>
<td>Altitude</td>
<td>0 m</td>
<td>0–25 km</td>
</tr>
</tbody>
</table>
2004–2005 Schedule

1st Semester

Fall NIAC Conference
Prototype Modeling-Design
End of 1st Semester

January

Prototype Construction-Calibration

2nd Semester

Balloon Flight
Jan-Feb

Data Analysis
Feb-March

Spring NIAC Conference
Mid-March
Questions?
Appendix
Proposed Solution

- Radiation Measurement

ACR vs.

Satellite vs. Scientific Balloon
Proposed Solution

- Radiation Measurement
 - Active Cavity Radiometer (ACR)

Global aerospace html link here
Educational Context

- Calvin College
 - Senior Design Course