

Louisiana State University

for Computation and

RAMJET ROCKET ENGINE

Applications Mumanian Relativity Remaille Lastine Adaptive Wash Refinament Computational Toolkit - Illipite Solvers Visualizarion

Presented by: Florin Mingireanu

Advisor: dr. Edward Seidel

Aerospace historic moments

- first century A.D. chinese army launches gun powder rockets
- Around 1800 Constantin Tiolkovski creates the theory of interplanetary flight
- 1910-1940: researches in both solid and liquid rocket engines-main concern: optimization of burning chamber and injection of the fuel.
- Second world war: Herman Oberth and Werner Von Braun work on rockets for german army. First successful liquid rocket engines used in military applications

ROCKET TECHNOLOGY TODAY

SOLID ROCKET ENGINES-fuel and oxidizer in the same tanksolid state LIQUID ROCKET ENGINES-fuel and oxidizer in different tanksliquid state

Current Technologies

- Ionic engines: low specific impulse, long operation time
- Nuclear rockets:solid, gaseous-studied at Los Alamos
- Solar sail, antimatter rocket, ramjet, casimir engine, MHD engine- currently in concept phase

Initial ramjet concept-how an idea is born

- Analog with water jetsky
- It absorbs fuel from surrounding medium, accelerate it and evacuates:conservation of momentum $(\vec{p1})=(\vec{p2})$
- First design done by germans during WW 2

Cosmic clouds

Bok globulae: T=10K-30K; n=10000 cm-3

Nebulae T= 10 K; n=10000 cm-3

HII regions: T=60K-80K; n=10e9 cm-3

Giant molecular clouds T=15-50K; n=500-5000 cm

Ramjet based spaceship

- Instead of water/air, use interstellar medium
- Low density, lower accelerations, longer mission times
- High terminal velocities over long time: cumulative effects

A little about physics of the ramjet

- Reference frame set on the ramjet
- Variation in energy equal with electric energy gained during electric acceleration: $\delta E = eU$
- Non-relativistic case: $\delta E = \delta E_c$
- Relativistic case: $\delta E = \delta E_{total}$ $\delta E_{total} = (m_{final} m_{initial})c^2$ $m = f(v) = m_{rest} / \sqrt{(1 v^2/c^2)}$
- Conservation of momentum -> speed of the ramjet
- Instant mass flow in the engine: $\delta m = nSvm$

Non-relativistic regime

- Movement of interstellar medium reaches relativistic regim
- Ramjet does NOT have relativistic speed (v < 0.2 c)
- Simpler numerical codes: same results as full relativistic codes

Relativistic regime

- Relativistic codes both for interstellar medium acceleration and ramjet movement
- Adaptive mesh refirement- multi-grid analysis
- Edge effects more important- critical effects

Relativistic effect

- Low speeds (nonrelativistic regim) speed seems to increase unbounded
- High speeds
 (relativistic regim)
 acceleration have an
 inflexion point

Pinch effect and stability

- Charged beam -> electric current -> magnetic field radially symetric
- Value of the magnetic field $\sim I/r^2$
- Magnetic pressure vs. Boltzmann pressure $pm=B^2/12.75$; pb=nKT
- Continuity equation: $V_z \rho y R^2 = const$
- stress energy vector $(T^{(\alpha\beta)})_{\beta}=0$
- Bernoully relativistic equation
- $(d/dz)\gamma^2 v_z R^2 [\rho c^2 + 4 p' + B'/(4 pi)] + 2 r_g/(v^2)_z \gamma^2 v_z R^2 (\rho c^2 + 4 p' + 2 U') + S_{rad} = 0$
- Radial dynamical pressure is of the order of magnetic pressure for linear flows $v_r \ll v_z$

What we accomplished:

- 1.) We understood what the physical limitation for an interstellar ramjet are
- 2.) We have obtained estimates of the capabilities of the ramjet
- 3.) We have opened questions about non-relativistic and relativistic plasma flowing problems
- 4.) Obtained an integrated numerical model for a simplified engine
- 5.) Complicated the system by introducing primitive edge effects

TO DO (homework) list:

- 1.) Analyse in greater the detail the friction in low density region and moderate speeds (non-relativistic regim)
- 2.) Better understanding of non-uniform rarefied plasma flowing through the engine- what bounday conditions should be met?
- 3.) Better understanding of edge effects in near relativistic regime
- 4.) Interaction between materials and interstellar wind- erosion problems?
- 5.) Better understanding of distribution and composition of interstellar matter inside our Galaxy

Thanks:

- NIAC-USRA: support in developing this idea
- dr. Edward Seidel: discussions on relativity and key notes with general elements
- Center for Computation and Technology: computer acces (computing clusters) and software support- working towards parallel running of relativisitic codes
- Louisiana State University: wonderful research facilities
- -and professors for allowing me to skip classes and come to the NIAC conference

THE END