

New Worlds Imager An Alternative to TPF

Webster Cash University of Colorado

Jim Green

Eric Schindhelm

Nishanth Rajan

Jeremy Kasdin **Princeton University**

Bob Vanderbei

David Spergel

Ed Turner

Sara Seager Carnegie Institution – Washington

Southwest Research Institute – Boulder Alan Stern

Steve Kilston Ball Aerospace

Erik Wilkinson

Mike Leiber

Jim Leitch

Northrop Grumman Jon Arenberg

Ron Polidan

Chuck Lillie

Willard Simmons **MIT**

and growing...

let's find the future Home of Manking

Life Elsewhere in the Unit

Exo-Planets

- Exo-planets are the planets that circle stars other than our Sun.
- There are probably 10,000 exo-planets within 10pc (30 light years) of the Earth.
- Planets are lost in the glare of parent star.
- The Earth as viewed from light years is 10 billion times fainter than the Sun.

Planet Finding: Extinguish the Star

Courtesy of N-G

Terrestrial Planet Finder

Telescopes must be **PERFECT** to suppress scatter: $\lambda/5000$ surface, 99.999% reflection uniformity

TPF is *very* difficult

New Worlds Imager vs. New Worlds Observer

- Two Levels of Difficulty
- **▽ New Worlds Observer**
 - -Two Spacecraft
 - -Goal is Finding Planets
 - Science from Photometry and Spectroscopy
 - -Technology is In-Hand Today
- - -Five Spacecraft
 - -Goal is True Imaging of Earth-like Planets
 - -MUCH Tougher Technology 10-15 years out

Initially New Worlds was a Pinhole Camera

Perfect Transmission No Phase Errors Scatter only from edges – can be very low

Large Distance Set by 0.01 arcsec requirement

diffraction: $\lambda/D = .01$ " $\rightarrow D = 10$ m @ 500nm

geometric: F = D/tan(.01") = 180,000km

Diffraction Still a Major Problem for Pinhole

Answer: Shape the Aperture

(Binary Apodization)

Developed by Princeton Group for Apertures

The Occulter Option

- **▽Smaller Starshade**
 - -Create null zone, image around occulter
- **Observe entire planetary system at once**

The Diffraction Problem Returns

- Several previous programs have looked at occulters
- **♥ Used simple geometric shapes**
 - Achieved only 10⁻² suppression across a broad spectral band
- **⇔With transmissive shades**
 - Achieved only 10⁻⁴ suppression despite scatter problem

http://umbras.org/

BOSS

Starkman (TRW ca 2000)

Extinguishing Poisson's Spot

○ Occulters Have Very Poor Diffraction Performance

- The 1818 Prediction of Fresnel led to the famous episode of:
- Poisson's Spot (variously Arago's Spot)
- Occulters Often Concentrate Light!

⋄ Must Create a Zone That Is:

– Deep Below 10⁻¹⁰ diffraction

– Wide A couple meters minimum

Suppress across at least one octave of spectrum Broad

Binary Non-transmitting to avoid scatter

– Size Below 150m Diameter

Tolerance Insensitive to microscopic errors

The Vanderbei Flower

- **Developed for Aperture in TPF focal plane**
- **⇔** Was to be only 25μ across
- **▽**Vanderbei had determined it would work for the pinhole camera but did not work for occulter.

The Apodization Function

Found this in April. Extended in June. This Function Extinguishes Poisson's Spot to High Precision

$$A(\rho)=0$$

$$\rho < r_1$$

and

$$A(\rho) = 1 - e^{-\left(\frac{\rho - r_1}{r_2}\right)^{2n}} \qquad \text{for} \qquad \rho > r_1$$

$$\rho > r_1$$

Suppression of Edge Diffraction Can Be Understood Using Fresnel Zones and Geometry

The occulter is a true binary optic

-Transmission is unity or nil

Edge diffraction from solid disk is suppressed by cancellation

-The power in the even zones cancels the power in the odd zones

Need enough zones to give good deep cancellation

Sets the length of the petals

-Petal shape is exponential ~exp(-((r-r₁)/r₂)²ⁿ)

 $ightharpoonup r_2$ is scale of petal shape

➤n is an index of petal shape

 $ightharpoonup r_1$ is the diameter of the central circle

Doing the Math (Cash, 2005)

The Residual Intensity in the Shadow is

$$I_s = E_s^2$$

Sy Babinet's Principle $E_s = 1 - |E_A|$

$$E_s = 1 - |E_A|$$

where E_A is field over Aperture

So We Must Show

$$\frac{k}{2\pi d} \left| \int_{0}^{2\pi} \int_{0}^{r_1} e^{\frac{ik\rho^2}{2d}} e^{-\frac{ik\rho s \cos\theta}{d}} \rho d\rho d\theta + \int_{0}^{2\pi} \int_{r_1}^{\infty} e^{\frac{ik\rho^2}{2d}} e^{-\frac{ik\rho s \cos\theta}{d}} e^{-\left(\frac{\rho-r_1}{r_2}\right)^{2n}} \rho d\rho d\theta \right| = 1$$

d is distance to starshade, s is radius of hole, k is $2\pi/\lambda$

Arr To one part in $\sqrt{C} \approx 10^{-5}$

$$\sqrt{C} \approx 10^{-5}$$

Contrast Ratio

Preceding integral shows the contrast ratio is

$$R = \left[\frac{(2n)!}{r_1^{2n}r_2^{2n}} \left(\frac{d\lambda}{2\pi}\right)^{2n}\right]^2$$

n is an integer parameter, currently n=4

To keep R small r₁~r₂

– this is the reason the occulter has that symmetric look

Off Axis Performance

The off axis performance shows a rapid rise to unit transmission for the radii greater than the inner edge of the habitable zone

Modified Rendering

"Standard" Observatory Views the Starshade

~0.1" resolution is needed (just to separate planets)

High efficiency, low noise spectrograph (e.g. COS)

Count rate estimation

Assuming visible solar flux and a half-earth viewed at 10 pc,

$$C \propto \frac{F_S r_E^2 D_T^2}{\varepsilon_{\gamma} d_S^2}$$

Can achieve 5 counts per second with 80% efficient 10 meter telescope

Telescope	Time required for	
	S/N=10 detection	
1 meter	33.3 minutes	
2 meter	8.3 minutes	
4 meter	2.1 minutes	
8 meter	31 seconds	

Another Issue: Scattered Light

- □ Sunlight Scatters Off Starshade
- Can be Controlled in Multiple Ways Sun
 - Look at right angles to sun
 - ➤ Imposes restrictions on revisit times
 - Operate in shadow
 - > Earth's umbra
 - ➤ With additional shade
 - Likely hard at L2
 - Easier in heliocentric orbit

Target

Starshade Tolerances

▽ Position

≻Lateral Several Meters

Many Kilometers **➤** Distance

⇔ Angle

≻Rotational None

➤ Pitch/Yaw Many Degrees

Shape

>Truncation 1mm

>Scale 10%

3cm² or greater > Blob

⇔Holes

➤ Single Hole 3cm²

≻Pinholes 3cm² total

Fly the Telescope into the Shadow

Typical Observing Timeline

AlignmentOther astrophysics	3 days	Travel
♡ Deep Photometry	1 day	Find Planets
Preliminary Spectroscopy	1 day	Classify Planets
♡ Detailed Studies	3 days	Search for
– Deep Spectroscopy		Water
Extended Photometry		Surface Features
_ _		Life ?!
Return After Months		Measure Orbits
_		New Planets from Glare

The First Image of Solar System

Great Science with Small Telescopes

CLower limit on telescope size set by need to acquire adequate signal and resolve planets from one another

- 1 m diameter telescope needed to see 30M object in minutes ➤ Resolution of 0.1 arcsec
- 2 m diameter gives count rate 0.2 sec-1 for Earth at 10 pc at half illumination

Mars

Uranus Jupiter Saturn **Neptune**

50,000 seconds

400,000 seconds

Zodiacal light

- Planet detectability depends on system inclination and telescope resolution
 - Face-on 0.3 AU² patch of zodi equal to Earth's brightness
- **▽**Zodiacal light can wash out planets at low inclinations

Zodiacal Light – 0.05" IWA

Pole-on

Edge-on

Spectroscopy

R > 100 spectroscopy will distinguish terrestrial atmospheres from Jovian with modeling

S. Seager

Photometry

Calculated Photometry of Cloudless Earth as it Rotates

It Should Be Possible to Detect Oceans and Continents!

Alternate Operations Concepts

○ Ground based telescope

- ➤ Relay mirror at GEO
- ➤ South Pole

▽Space based telescope

- >As JWST instrument
- ➤ Dedicated telescope and mission

Occulter and Detector Craft Functions

- **⇔** Propulsion
- **⇔** Station keeping
- **Alignment establishment and maintenance**
 - -Measurement and reporting of relative location
- **▽ Data transfers**
- Pointing requirements dependent on tolerancing of occulter
 - -Pointing error results in an error in the occulter shape by projection
- → What is the role of the ground in directing the two SC?
 - -Cost trade?

Formation Flying Simulation

Largest problem is solar radiation pressure

-Pinhole craft's cross sectional area: 7150 m²

-Craft will be thrown out of libration point orbit

after several days

Total stationkeeping △V [m/s]

	L ₂	L ₅
20,000 km	10.2	20.3
200,000 km	9.8	20.7

Number of burns during exposure

	L ₂	L ₅
20,000 km	6700	3740
200,000 km	6700	3810

Formation Flying Simulation

Stationkeeping △V estimated in STK/Astrogator

- Detector craft assumed active; pinhole craft assumed passive
- Control box of 10 cm half-width defined
- Active S/C thrusts when box boundaries reached
- Gravity of Earth, Sun, Moon included, plus solar radiation pressure
- Separations of 20,000 km and 200,000 km considered at Earth-Sun L₂ and L₅

EELV 5 meter heavy

Up tp 150 m New Worlds Observer Will Fit in an ELV Heavy

Generic L2 Bus

New Worlds Deploys Like Solar Arrays

Simple, robust, proven deployment scheme

Simple low cost solar array style deployment

TRUE PLANET IMAGING

Earth Viewed at Improving Resolution

Solar System Survey at 300km Resolution

NWI Concept

Holding the Array

Information is there: We will study the realistic limits of two element interferometers

Resolution Limitation Set By Signal

- TAt 10 km resolution the interferometer is photon-limited
- **→ Need Much Bigger Telescopes Too Expensive**

The Phase II Study

Two Year Study Began on September 1

Observer Mode Well Understood

- ➤ Complete Architecture Study Completed in First Year
- ➤ Laboratory Demonstration of Diffraction Suppression

□ Imager Mode More Difficult

- ➤ Will Study Requirements in Detail
- ➤ Will Look for Ways to Make the Mission More Affordable

Conclusion

By 2018

