

NIAC 7th Annual Meeting Tucson, Arizona October 18th, 2006

An Architecture of Modular Spacecraft with Integrated Structural Electrodynamic Propulsion (ISEP)

Nestor Voronka, Robert Hoyt, Brian Gilchrist, Keith Fuhrhop

Engineering the Future

TETHERS UNLIMITED, INC.

11711 N. Creek Pkwy S., Suite D-113 Bothell, WA 98011

(425) 486-0100 Fax: (425) 482-9670 voronka@tethers.com

Motivation

- Traditional propulsion uses propellant as reaction mass
- Advantages (of reaction mass propulsion)
 - Can move spacecraft center of mass, on-demand, and relatively quickly
 - Multiple thrusters offer independent and complete control of spacecraft (6DOF)
- Disadvantages
 - Propellant is a finite and mission limiting resource
 - Propellant mass requirements increases exponentially with mission ΔV requirements
 - Propellant may be a source of contamination for optics and solar panels
- Current Architectures of NASA's Vision of Exploration require launching and transporting large masses
- Are there innovative alternatives?

Space Propulsion Landscape

Electrodynamic Space Tether Propulsion

- In-space propulsion system
- PROS:
 - Converts electrical energy into thrust/orbital energy
 - Little or no consumables are required

CONS:

- Long (I-100km) flexible structures exhibit complex dynamics, especially in higher current/thrust cases
- Gravity gradient tethers have constrained thrust vector
- Relies on ambient plasma to close current loop

Given a fixed amount of power available and fixed conductor mass, thrust efficiency is independent of the length of the conductor

Proposed Solution

- Multifunctional propulsion-and-structure system that utilizes Lorentz forces (F = iL x B) generated by current carrying booms to generate thrust with little or no propellant expenditure
 - Utilizes same principles as electrodynamic tether propulsion
- Utilize relatively short (≈100 meter), rigid booms with integrated conductors capable of carrying large currents, that have plasma contactors at the ends
 - Space Tether Electrodynamic Propulsion
 - Ex: 10km conductor, 1Ampere in LEO
 - Thrust $|iLxB| \approx 0.3$ Newtons
- Proposed Integrated Structural Propulsion
 - Ex: 100m conductor, 100 Ampere (!) in LEO
 - Thrust |iLxB| ≈ 0.3 Newtons
 - _ Torque ≈ 750 N·m

Single Boom Concept of Operation

- Apply potential to overcome motion-induced electric field and drive current across magnetic field
- Current flowing down boom produces thrust force
- Plasma waves close the electrical circuit

'Structural' ED Propulsion

 By connecting six booms to a spacecraft along orthogonal axes, 4DOF of motion can be controlled (translational and rotational)

ISEP Booms

- Cold biased, low-resistance element to maximize propulsive performance
 - Copper Clad Aluminum (CCA)
 offers low specific resistivity, yes
 remains easy to work with
 - Ex. $0.01\,\Omega/50$ meter boom has a 0.44 kg/m density
- Stiffness dictated by application
- Boom ends contain plasma contactors & docking sensors
- Hemaphroditic high-current capacity docking mechanism

100 Ampere Contactors for ISEP

Emission	Device	Power	Notes
Electron Emission	TC + Electron Gun	2.1 MW	18 emitters, < 1.25 V for SCL
	FEA	5860 W	10 emitters, < 0.4 V for SCL
	HC	1250 W to 10 kW	Flow Rates & Ion Type 9 sccm to 40 sccm Xe
Electron Collection	Passive Sphere a	4.7 MW	1 m radius, 6.6E-3 N Drag 90% Porous – 6.6E-4 N
	Passive Sphere b	1 MW	2.29 m radius, 3.46E-2 N Drag 90% Porous – 3.46E-3 N
	Passive Plate a	61.3 MW	$5 \text{ m}^2 - 5.26\text{E}-5 \text{ N Drag}$
	Passive Plate b	1 MW	54.52 m ² – 5.73E-4 N Drag
	НС	6150 W + 330 W (20 A ion prod.)	280 sccm fuel 27.35 mg/s Xe ⁺ or 0.21 mg/s H ⁺
Ion Emission	Ion Emission + Ion Gun	1 MW + 1650 W (100 A ion prod.)	83,334 emitters needed
	HC	1000 W + 1650 W (100 A ion prod.)	1400 sccm fuel 27.35 mg/s Xe ⁺ or 0.21mg/s H ⁺

ISEP Nodes

- Node geometry
 - Simplest has 6 orthogonal mating surfaces
 - Can also utilize polyhedrons with mating surfaces spaced 45° along the circumference
- Node components
 - Energy storage (flywheels @ 75 W-hr/kg)
 - System & Navigation
 Controllers

Modular Spacecraft

 By making booms and spacecraft modules modular and interconnectable, we create selfassembling Tinkertoy[®] like components for space structures and systems

ISEP Applications

- Self-Assembling Modular Spacecraft (SAMS)
- Self-Assembling Structure for Refueling Station
 - Integral rail gun for commodity delivery
- Self-Assembling Space Tug
- Self-Assembling Structure for Large Mirror or Antenna Arrays
- Formation Flying Space Systems
 - Terrestrial Planet Finder (TPF)

ISEP Performance Analysis

- Six 50m orthogonal booms in 300-1100km, 0-97° inclination orbits
- FEAs for electron emission, HCs for ion emission
- Total system mass 1000kg with 20kg H consumable (approx 3 years full time operation)
- Current commanded to 100A continuous for 30 days
 - System Input power 6500 Watts
- Performance metrics tabulated & averaged

Along-track Total ΔV

ISEP Performance (cont.)

- Thrust magnitude and efficiency highly dependent on alignment of boom(s) with magnetic field
- Torques in the I-10 N-m range as compared to disturbances in the 10⁻⁸ to 10⁻¹ range

Along-track current torque (N-m)

Isp vs. Thrust to Power (uN/w)

ISEP Performance

- ISEP is competitive with other EP technologies
- In systems where collinear booms are assembled, performance improves
- For missions where structural elements are required, ISEP's dual use (propulsive/structural) has significant advantages

 KEY TECHNOLOGY CHALLENGE: Power- and Mass- Efficient collection and emission of electrons from/to the ambient plasma

Technology Demonstration Experiment

- Primary Experiment Objectives
 - Generate directly detectable torque
 - Generate directly measurable thrust
- Secondary Experiment Objectives
 - Validate performance of Field Emissive Electron device(s)
 - Validate performance of lightweight electron collectors
- GOAL: Drive I Ampere of current through lightweight deployable, conductive 10-20 meter booms
 - 0.2-1.0 second impulses > 0.5 mN

Experimental Method

- Picosatellite launched as a secondary payload
- Target platform CubeSat
 - lkg l0xl0xl0 cm envelope
 - Standard initially designed for University class experiments and educational purposes
 - Typically I-2 launch opportunities a year
 - Launch costs \$40-120K for a 1U CubeSat
 - Ideal for simple experiments and technology demonstrations

Picosat Experiment Contactors

Field Emissive Cathodes

- Microfabricated Emitter tips rely on sharp emitter tips, and close non-intercepting electrodes to generate high field required to enable electrons to quantum tunnel out of the material into space
- High current densities (5000A/cm²) have been demonstrated
- Development undergoing to increase total current output and reduce environmental constraints
- Passive Electron Collector ('Hedgehog')
 - Bundle of conductive yarns
 - Yarns tied together at root, and when charged will form approximately a 'Koosh-ball' like spherical structure due to electrostatic repulsive forces
 - 2 meter diameter structure with yarns every 40°, and filament every 1° can weigh 10 grams(!)

Experiment Conops

- Converted Solar Energy is stored onboard in capacitor bank
 - Allow for thrust pulse every 4-6 orbits
- At desired B-field alignment, discharge capacitor to generate I Ampere pulse
- Measure Thrust with onboard accelerometers
- Measure Torque with body attitude rate change

Summary

Proposed Concept IS feasible

- Requires small amount of consumables for ion source
- 4DOF propulsion—no thrust in B-field direction
- Competitive with tradition Electric Propulsion with added benefit of structural elements

Technology Challenges

- High Current Plasma Contactors
 - Devices exist robust units with higher efficiencies needed
- Plasma Contactor Space Charge Limiting
 - High current densities may be environmentally limited
- Collision proof coordinated control laws for formation flight, and self-assembly
 - Additional constraints imposed on low-thrust control laws
- Experiment in Phase II will demonstrate system feasibility and validate component technologies
- Potential Applications
 - Space Tug and Commodity Depot (with integral rail gun?)
 - Structure for Beamed Power Solar Array/Antenna Fields
 - Structure for Space Habitats with Integral Drag Makeup