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Motivation

— iraditional propulsion’ Uses' propellant as reaction| mass

— Advantages (off reaction mass propulsion)

" Can move spacecraft center of mass, on=demand, and
relatively quicldy:

" Multiplerthrrusters offer independent andl completelcontroll of
spacecraft (6DOF)

— [Disadvantages
* Propellant isia finite and mission limiting reseurce

* Propellant mass requirementsi increases exponentially with
mission AV’ requirements

* Propellant may be a source of contamination for optics and
solar panels

— Current Architectures of NASA's, Vision| of Exploration
require launching andl transporting large masses

_ Are there innovative alternatives’
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Space Propulsion; Landscape

10,000 sec

2,000 sec

20,000

Solar

L heated H, Nuclear fission

i Liquid and solid
Resistojet chemical propellants
Monopropellant

Q
@
E
=
O
O
©
>
3
£
=
)
o
=
3
=
w

S

selines

L] lsp

10 10% 10% 107 1 10 100 1000
Acceleration in multiples of earth gravity g, or thrust to
vehicle weight ratio

Courtesy Gallimore, A., UMich




Electrodynamic Space Tether Propulsion

— In-space propulsion system
- PROS: =

* Converts electrical energy into
thrust/orbital energy

* [ittle or no consumables are required

- CONS:

* long (I-100km) flexible structures
exhibit complex dynamics, especially in
higher current/thrust cases

* Gravity gradient tethers have constrained
thrust vector

* Relies on ambient plasma to close

current loop Given a fixed amount of power available
and fixed conductor mass, thrust

efficiency is independent of the length
of the conductor




= Vitintncucnal propulsion-and=structure
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ISEP Booms

_ Cold biased, low-resistance A
element to maximize propulsive | °
performance _\
* Copper Clad Aluminum; (CCA) |

offers low: specific resistivity, yes
remains easy to worl with W

_ Ex. 0.01Q/50 meter boom has a 0.44 \
kg/m| density

— Stiffness dictated by application

- Boom ends contain plasma
contactors & docking sensors

- Hemaphroditic high-current
capacity docking mechanism




100 Ampere Contactors for ISER

Emission Device Power Notes
TC + Electron Gun 2.1 MW 18 emitters, < 1.25 V for SCL
Electron FEA 5860 W 10 emitters, < 0.4 V for SCL
Emission
HC 1950 W to0 10 KW Flow Rates & lon Type
9 sccm to 40 sccm Xe
: 1 m radius, 6.6E-3 N Drag
Passive Sphere a 4.7 MW 90% Porous — 6.6E-4 N
: 2.29 m radius, 3.46E-2 N Drag
Electron RassIvElSRICIEN - L 90% Porous — 3.46E-3 N
Collection |  Passive Plate a 61.3 MW 5 m” —5.26E-5 N Drag
Passive Plate b 1 MW 54.52 m* — 5.73E-4 N Drag
HC 6150 W + 330 W 280 sccm fuel
(20 Aion prod.) | 27.35 mg/s Xe" or 0.21 mg/s H"
lon Emission + lon 1 MW + 1650 W :
| Gun (100 A ion prod.) 83,334 emitters needed
o 1400 sccm fuel
Emission . .
HC L 27.35 mg/s Xe" or 0.21mg/s H

(100 A ion prod.)




ISEP Nodes

- Node geometry - <
» Simplest has 6 orthogonal ?\ﬁ% f/f/
mating surfaces /‘5 P
* Can also utilize polyhedrons /"’”/ | —as

with mating surfaces spaced
45° along the circumference
l

- Node components

* Energy storage (flywheels @
75 W-hr/kg)

» System & Navigation
Controllers
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f-Assembling Structure; fof

* Integral raill gun for commodi

e

— Self-Assembling Space lug
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- Self-Assembling Structur:

© Antenna Arrays

®
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- Formation Flying Space Syste

* | errestrial Planet Finder (| Pk)
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ISEP' Performance Analysis

_ Six 50m orthogonal beoms in 300-1 100km, 0-97°
inclination: orbits

_ FEASs for electron emission, HCs for ion emission

- Total system mass — 1000kg with 20kg H consumable
(approx 3 years full time operation)

- Current commanded to |00A continuous, for 30 days
* System Input power - 6500 VVatts

- Performance metrics tabulatedi & averaged

Circular Orbit Altitude (km)

Along-track Total AV Cross-track Total AV Radial TotalAV



ISEP' Performance (cont.)

- Thrust magnitude and efficiency
highly' dependent on alighment
of boom(s) with magnetic field

- Torques in the I-110/N-mi range
as compared to disturbances: in
the 10-® to 10" range

Average Along-track Thrust (N) Average Specific Impulse (Isp) Isp vs. Thrust to Power (uUN/w)



ISEP' Performance

ISEP'is competitive with other EP'technologies

In' systems where collinear booms are assembled, perfermance
IMproves

For missions where structural elementsiare required, ISEP’s dual use
(propulsive/structural) has significant advantages

¢ Resistojet

m Arcjet

a Rulsed Hasma Thruster
Hall Bfect Thruster

X lon Thruster

® Integrated Structural BP

Thrust-to Power (NNkW)

KEY TECHNOLOGY CHALLENGE: Power- andl Mass- Efficient
collection and emission of electrons from/to the ambient plasma
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I'echnology’ IDemonst

— Brimary’ EXperimer O'r]ect‘

* Generate directly det

LL‘
(L‘
0]
(L
p_‘
(L‘
(s
C
‘1
|
—
(P

* Generate ¢ Jerccl/ measurable; thr

- GOAL: Drive | Amper
through lightweignht deplo y:-

conductive 10-20 meter bo
* 0.2-1.0 second impuises > 0.5




Experimental Method

— Picosatellite launched as a secondary
payload

— Target platform — CubeSat

* Ikg— 10x10x10'cm envelope

» Standard initially’ designed for University class |
experiments and educationall purposes

* Typically I-2 launch opportunities a year
e | aunch costs $40-120K for a |U CubeSat

* |deal for simple experiments and

technology demonstrations




Picosat Experiment Contactors

- Metal tip
c, _-Metal gate film

/ J/ Bl ) e

_ Field Emissive Cathodes

* Microfabricated Emitter tips rely oni sharp emitter
tips, andl close non-intercepting electrodes to
generate high field required to enable electrons to
quantum tunnel out of the materiall into space |

e High current densities (5000A/cm?) have been
demonstrated

» Development undergoing to increase total current
output and reduce environmentall constraints

- Passive Electron Collector (‘Hedgehog’)

* Bundle of conductive yarns

* Yarns tied together at root, and when, charged will
form approximately a ‘Koosh-ball* like spherical
structure due to electrostatic repulsive forces

e 2 meter diameter structure with yarns every 40°,
and filament every |° can weigh 10 grams(!)




Experiment Conops

Converted Solar Energy is stored onboard in capacitor banik

» Allow: for thrust pulse every 4-6 orbits
At desired B-field alignment, discharge capacitor to generate |/Ampere pulse
Measure Thrust with onboard accelerometers

Measure Tlorque with body attitude rate change

Peak Power Tracker,
Converters, and
Battery Chargers

Solar Cells

Field Emissive
Array Cathode HY . Conductive Insulated
Controller Capacitor Booms with
0 Electron Collecting

Structures




/' Summary

Technology C

Proposed Conce]

* Requires small a
 4DOF propulsmx
* Competitive V;Z{[

t IS feasible
/ount of consumables for ion source
— no thrust in B-field direction
tradition Electric Propulsion with added ben

elements

allenges

“High Current/; lasma Contactors I
- Devices exlst — robust units with higher efficiencies needed i1

* Plasma Contactor Space Charge Limiting
- High current densities may be environmentally limited

* Collision pr of coordinated control laws for formation fllgh
Y Addltlof' constraints |mposed on low-thrust control laws

, and seIf—assemny

Experiment/in Phase Il will demonstrate system fea | ility and valldate
component echnologles

Potential A pllcatlons
* Space T/ and Commodity Depot (with integral rail gu
» Structufé for Beamed Power Solar Array/Antenna Fiel d
. Struct/}' for Space Habitats with Integral Drag Make H
/

S
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