GENERAL DYNAMICS Advanced Information Systems

Modeling Kinematic Cellular Automata: An Approach to SelfReplication

NASA Institute for Advanced Concepts

Phase I: CP-02-02

Principal Investigator:

Tihamer Toth-Fejel

Tihamer.Toth-Fejel@gd-ais.com

Consultants:

Robert Freitas

Matt Moses

March 22, 2004 NIAC Fellows Presentation

Modeling Kinematic Cellular Automata

- Rationale
- Benefits
- Applications
- Project Goals
- Strategy
- Accomplishments
- Conclusion and Future
 Directions
- Additional Material

Rationale

- Why Self-Replication?
- Why not Self-Assembly?
- Why Kinematic Cellular
- Automata?
- Why both macro and nano scale?

Rationale: Why Self-Replication?

- Revolutionary manufacturing process
- Nanotechnology
- Massive reduction in costs per pound
- Controlled exponential growth

Rationale: Why not Self-Assembly?

Examples have been demonstrated

But...

- Not "Genotype + Ribotype = Phenotype" (GRP)
- No theory
- Against the principles of sound design

However...

Use it for simple input parts

Rationale: Why Kinematic Cellular Automata (KCA)?

- Combines Von Neumann's two designs
- Increased flexibility
- Decreased complexity
- Large system work envelope
- Sometimes better than smart dust

Rationale: Why Both Macro and Nano Scale?

- Abstract design
- Macro:
 - Possible with current technology
 - Useful products
 - Proof of concept in short term
- Nano:
 - Quality of atoms (and molecules)
 - Self-assembled input parts possible
 - Significant financial payoff

Eigler's IBM Ad

Traditional Top Down Manufacturing vs Bottom-up Molecular Replication

Benefit: Programmable

Materials Simple identical modules

- Flow Mode
- Pixelated Mode
- Logic Processing Mode

Flow Mode

Pixelated Mode

Application: Space

- Exploration
 - Robust
 - Hyperflexible
- Resource Utilization
 - Lower launch weight
 - Expandable
- Terraforming
 - Politically feasible
 - Opens new frontier

Project Goals

- Characterize self-replication
- Quantify the complexity of Self-Replicating System (SRS) made of Kinematic Cellular Automata (KCA)
- Confirm approach
- Design a KCA SRS
- Simulate designs

Project Strategy

- Hybridize two self-replication models
- Keep it simple
- Make it complicated
- Refine approach
- Attempt design
- Imitate computers
- Imitate biology

Accomplishments

Goals

Accomplishments

Characterize unexplored area	Explored Multi-Dimensional Space
Quantify the difficulty	Not trivial, but less than a Pentium
Confirm or refute approach	Refined Approach Useful SRS Hierarchy of Subsystems, Cells, Facets, & Parts Transporter, Assembler, & Controller Low-level simpler than high-level Top-Down vs Bottom-Up Self-Assembly for input Parts Standard concepts Universal Constructor is approach, not goal
Design a KCA SRS	Developed Requirements Preliminary Design
Simulate designs	Modeled Simulations

Characterizing Self-Replication: Adjusting the Freitas/Merkle 116-Dimension Design

Quantifying Difficulty of SRS Design

Hierarchy

Biology KCA SRS Computer

Horse	Self-replicating System: Useful	Processor
Brain and Muscles	Subsystems: Transporter, Assembler, and Controller	Bus/Memory, ALU, and Controller
Cells	Cells: Cubic devices with only three limited degrees of freedom	Finite State Machines, Shift Registers, Adders, and Multiplexers
Organelles	Facets: Symmetrical implementation	
Proteins	Parts: Inert, Simpler than higher levels	NAND gates
Genes	Self-assembling Subparts: Wires, Transistors, actuator components	Transistors, Wires
Molecules	Molecules	Molecules

Original Approach: Feynman method

- 1. Start with trivial selfreplication
- 2. Move the complexity out of the environment and into the SRS by doubling parts count of the component (Trivial⁺¹ case)
- 3. Reiterate

Original Approach: Feynman method

"Plenty of room at the bottom", top-down, fractal

Refine Approach (by 180°)

- •We should start at the bottom level and work up
- Imitate Mother Nature
- •The Trivial+2 case has already been done

The Bottom-up Approach

Well-ordered environment,

Simple inert parts

Symmetric facets

Modular cells

Assembler, Transporter, and Controller subsystems

Self-Replicating System

Subsystem Requirements

If atoms are analogous to bits, then:

- Memory/Bus --> Transporter
 - Moves Parts
- ALU --> Assembler
 - Connects Parts
- Control --> Controller
 - Decides which Parts go where
 - Standardized

Transporter Subsystem

Assembler Subsystem

(pink corner structural part)

Controller Subsystem

FPGA Editor View of a PicoBlaze Macro in an XC2S50E Spartan-IIE Device

Cell Design Requirements

- Structure:
 - Lock, 1-D slide, disconnect
- Actuators:
 - Transform
 - Move
- Sensors:
 - Detect Position
 - Transmit messages
- Logic:
 - Decode messages
 - Accept, store, forward messages
 - Activate commands

Unit Cell

(center structure, motors, sensors, and tabs omitted)

Facet Design Requirements

- Structure:
 - Insert or retract
- Actuators:
 - Transform
 - Move tabs
- Sensors:
 - Transform
- Logic:
 - Decode

Unit Facets

Parts Design Requirements

- Structure:
 - Solid
- Motors:
 - Rotary
 - Linear
 - IMPC
- Sensors:
 - Translate signals
 - Detect parts position
- Logic
 - Activate messages to motors
 - Aggregate digital logic

Parts: Structure, Sensors & Solenoids

Software Simulation

- Sensor Position Simulation Tool
- NAND gate & op-amp Self-Assembly Tool
- Facet Animation
- Transporter and Assembler Simulation

Position Sensor Simulation

Self-assembly of NAND gate and op-amp

Facet Animation

Simulation of Transporter and Assembler

Conclusion and Future Directions

No roadblocks!

- Final Design for macro physical prototypes
- Build physical prototypes
- Build and run small cell collections
- Build and run subsystems
- Build macro scale SRS
- Write Place and Route software
- Refine concept at nano scale

Acknowledgements

- NASA Institute for Advanced Concepts
- John Sauter Altarum
- Rick Berthiaume, Ed Waltz, Ken Augustyn, and Sherwood Spring – General Dynamics AIS
- John McMillan and Teresa Macaulay
 - Wise Solutions

- Forrest Bishop
 - Institute of Atomic-Scale Engineering
- Joseph Michael Fractal Robots, Ltd.

Additional Material

- Assumptions
- Previous and Related Work

KCA SRS Assumptions

- Parts supplied as automated cartridges
- Low rate of errors detected in code

Previous and Related Work

- Freitas and Long NASA Summer Study:
 Advanced Automation for Space Missions (1980)
- Michael Fractal Robots
- Chirikjian and Suthakorn Autonomous Robots
- Moses Universal Constructor Prototype
- Zyvex Exponential Assemblers
- Freitas and Merkle Kinematic Self-Replicating Machines (2004)

Previous Work: NASA Summer Study

Advanced Automation for Space Missions - Freitas and Long - (1980)

- Strengths
 - First major work since 1950s
 - Cooperation of many visionaries
- Weaknesses
 - short, no follow-up
 - paper study only
 - pre-PC technology

FOR MORE INFO...

Previous Work: Joseph Michael

FOR MORE INFO...

- Strengths
 - "The DOS of Utility Fog"
 - Working macro modular robots
 - Limited DOF = better structure
- Weaknesses
 - Fractals just push problem to lower, less-accessible level
 - no detailed methodology for self-replication

http://www.fractal-robots.com/

Previous Work: Forrest Bishop

- Strengths
 - Very Limited DOF
 - Clear macro design
- Weaknesses
 - Nanoscale implementation clearly implied, but not clearly designed
 - no detailed methodology for self-replication

'Z'-AXIS ARM 'X'-AXIS GANTRY LOCKING PIN HOUSING V**O**LTAGE BOOSTER GANTRY CELL

FOR MORE INFO...

Related Work: Chirikjian/Suthakorn

- Strengths
 - Autonomous implementation of Trivial⁺² case (4 parts)
 - Directed towards extraterrestrial applications
 - Lego isomorphic with molecules
- Weaknesses
 - Small UC envelope
 - Depends on non-replicating jigs
 - High entropy environment limits extension to Trivial+3

FOR MORE INFO...

http://caesar.me.jhu.edu/research/self_replicating.html

Related Work: Zyvex

Projects

- Applying MEMS and nanotubes
- Parallel Micro and Exponential Assembly
- Strengths
 - First and only funded company trying to build a Drexlerian assembler
- Weaknesses
 - MEMS is 1000X too big
 - surfaces too rough
 - Exponential Assembly is machine selfassembly (not Universal Constructor; not GRP paradigm; not Utility Fog)

FOR MORE INFO...

http://www.zyvex.com/

Related Work: Freitas/Merkle

LANDESBIOSCIENCE

Kinematic Self-Replicating Machines

Robert A. Freitas Jr. Ralph C. Merkle

(c) 2004 Robert Freitas and Ralph Merkle

Kinematic Self-Replicating Machines (Landes Bioscience, 2004)
First comprehensive review of field

- 1. The Concept of Self-Replicating Machines
- 2. Classical Theory of Machine Replication
- 3. Macroscale Kinematic Machine Replicators
- 4. Microscale and Molecular Kinematic Machine Replicators
- 5. Issues in Kinematic Machine Replication Engineering
- 6. Motivations for Molecular-Scale Machine Replicator Design

Related Work: Matt Moses

- Strengths:
 - CAD to physical implementation
 - Large envelope UC

- Weaknesses:
 - Strain bending under load
 - Manual control

Moses is a technical consultant for this project

Why Universal Constructors?

- UC is the ability to build anything
- Uses "Genotype+Ribotype = Phenotype"
- Construction envelope includes itself
- Atoms equivalent to bits
- SRS only needs limited UC capability