PERSPECTIVES ON PROPULSION FOR FUTURE SPACE MISSIONS

Keynote, NIAC Fellows Meeting March 24, 2004, Crystal City, VA

> By Jerry Grey

First Task: Earth to Orbit

- (1) Existing Expendable Launch Vehicles: Atlas-V, Delta-4
- (2) Shuttle-Derived Vehicles: Shuttle-C, Shuttle-Z, Shuttle-B, Ares, Wingless Orbiter, Flyback Booster, Liquid-rocket Boosters
- (3) New Reusable Vehicle: Rocket, Rocket-based Combined Cycle
- (4) Advanced Concepts: Tethers, Laser-powered rockets, Guns, etc.

Basic Problem: Achieve Orbital Speed (~7.5 km/s)

- V = Ve (In Mo/Mf) gravity drag
- Best Ve ~ 3.5 4.0 km/s
- Hence Mo/Mf > 9
 (> 89% expendables)

Shuttle-Derived Vehicles:

A Launch Option for Space Exploration

A New Beginning?

Change Factors:

- China in Space
- Columbia Tragedy
- Shuttle Orbiter being phased out
- Space Station operational
- Orbital Space Plane: Dead
- Project Constellation

Basic change in space philosophy since 1981.

Now have "destination" in LEO, Orbiter phasing out, new competition.

What is a Shuttle-Derived Vehicle (SDV)?

- New vehicle using major components of NASA's Space Transportation System (STS).
- Modified and/or replaced:
 - Orbiter
 - Solid Rocket Boosters
 - External Tank
 - Engines (SSMEs)
- May be Piloted or Unpiloted

STS Components

- Orbiter
 - Crew, cargo, engines
 - 1.5 M-lb thrust
- Solid Rockets
 - Main liftoff thrust (5.2 M-lb)
 - "Pillars" on launch pad
- External Tank
 - 2 tanks: LOX, LH2
 - STS structural backbone
 - Brought almost to orbit, discarded

Why an SDV?

- New missions
 - Cargo to LEO and beyond
 - New piloted-vehicle launcher
 - Large lunar/planetary missions
- Cargo versions: 2x-3x Orbiter
 - 80 to 150 klb to LEO
 - Shuttle Orbiter: 50 to 65 klb
- Reduced development costs
- Use of STS infrastructure
 - Launch facilities
 - Ground support and processing
 - Design and production heritage

Some SDV Approaches

• Shuttle-C, Shuttle-Z, Shuttle-B

 Replace Orbiter with cargo module, upper stage, etc.

• Inline HLLVs (e.g. Ares)

 Adapt engines, tankage, solids for new launch vehicle

New Booster Rockets

- Liquid, Flyback, Hybrid

Wingless Orbiter

 ET reaches orbit with nonreturning piloted vehicle

SRB-X

All-solid launcher using
 Shuttle Solid Rocket Boosters

Shuttle-C

- Cargo canister replaces Orbiter
 - 2-3 SSMEs in Orbiter "boat-tail"
 - Engines, canister destroyed on re-entry
- 100 150 klb to LEO
- Closest SDV to reality
 - NASA-funded 1987-91
 - Killed by other Space Station
 Freedom needs

New Concept: Shuttle-B

- Use new expendable engines
 - Boeing RS-68, now used on Delta-IV
 - Northrop Grumman TR-106, ground tested
- Engines fixed to, discarded with ET
- Launcher-independent "payload vehicles"
 - Attached to ET above engines
 - Cargo Carrier
 - Space Exploration Vehicle
 - Payloads / Upper Stages
- Configuration shown is "schematic"

Shuttle-B Configurations

- Cargo
- Upper Stage
- Space ExplorationVehicle

NOTE:

Configurations, payloads shown are speculative.

Shuttle-B Expendable Engines

Boeing RS-68

- 750 klb thrust (vs 500 klb SSME)
- Two RS-68s at 100% rated thrust match three SSMEs at 109% rated thrust
- Some payload penalty: Isp 410 sec (vs 452 sec for SSME)
- Reduced parts count, not man-rated.
- Now flying, on Delta-IV Evolved Expendable Launch Vehicle (EELV).

• Northrop Grumman (TRW) TR-106

- Pintle-injection (similar to LEM descent engine)
- 650 klb thrust
- Northrop Grumman claims one-half to onefourth cost of RS-68 due to simplicity.
- Limited test-firings in 2000; would require development, man-rating

Ares Launcher

Direct ascent for "Mars Direct"

- Robert Zubrin, David Baker, Owen Gwynne
- Circa 1991, Lockheed Martin

• Semi-Inline Concept

- Use ET, SRBs
- Side-mounted engines
- Top-mounted cryogenic upper stage and payload

• Payload: 104,000 lb to Mars

- Earth Return Vehicle
- Habitation Module & Crew

Wingless Orbiter

 General Dynamics, External Tanks Corp.

 Orbiter w/o wings lofted (no return)

 Connected to emptied External Tank

Large-volume station
 with Orbiter crew cabin,
 payload bay

Liquid Rocket Boosters

- Advantages
 - Throttleable
 - Handling
- <u>Issues</u>
 - Complexity
 - Thrust
 - Cost
 - Reusability

Flyback Booster Concept

- Replace SRBs with liquid boosters that fly back to launch site.
- Jet engines for powered landing. Unpiloted.
- Flyback boost part of many early STS designs.
- Probably dead issue for STS following Columbia, Orbiter phase-out.
- May be an element in future SDV concepts.

SSTO: The "Holy Grail"

- Recent program: X-33 -> Venturestar
- Fully Reusable
- Propulsion: Hydrogen/Oxygen Aerospike Rocket
- Space Launch Initiative (NGLT): Two-Stage-to-Orbit (TSTO) using Kerosene and Oxygen
- Hyper-X; HyTech: Scramjet Technology
- No current large reusable LV development

Advanced-technology chemical rockets

- Solid/liquid hybrid rockets
- High thrust/weight, "Russian" cycles
- Gelled and metallized propellants
- High energy density materials

Generation-3 Technologies

- Combined-cycle engines
- Pulse-detonation engines
- Launch assist
- Gun launch

Once in Earth orbit, what next?

Space Exploration Vehicle (Project Constellation): Undefined; likely to be a modular set of Apollo-derived capsule-based vehicles

<u>Project Prometheus</u>: Nuclear-reactor powered electric thruster; new radioisotope powerplants for spacecraft

Nuclear thermal rocket: NERVA-based (solid-core reactor), particle-bed reactor, gas/plasma core, nuclear pulse (Orion)

Advanced concepts: Solar sails, laser-driven sails, tethers, M2P2, fusion-based rockets, antimatter propulsion, etc.

In-Space Propulsion-Currently Operational

- Chemical rockets (solid-propellant, liquid monopropellant, liquid bipropellant
- Arcjets
- Electromagnetic and electrostatic thrusters (all solar powered)
- Aerobraking and aerocapture (for planetary insertion)

Project Prometheus

- Originally in Code S, Office of Space Science, now in Code T: Office of Space Exploration
- Performance upgrades to radioisotope power systems
- (2) Development of a nuclear reactor, *ca* 100 kWe, to power an electric propulsion system and to provide large amounts of onboard power for scientific and exploration spacecraft.
- (3) Development of a 100 kWe electric propulsion system
- (4) Does not include nuclear thermal propulsion

Prometheus Heritage

- (1) Current RTG powerplants (Galileo, Cassini): ca 250 We
- (2) SP-100 reactor-powered thermoelectric: canceled 1992
- (3) SNAP program (1950s, 1960s, 1970s):
 - SNAP-8: 30,000-hr test
 - SNAP-10A orbited 1964 (500 We SERT)
 - SNAP-20 design: 20 MWe
- (4) Electric thrusters for Deep Space 1; long-term testing at GRC; XIPS at Hughes

Prometheus Isotope Power Research

- (1) Thermoelectric Conversion
 - MIT: SiGe nanocomposites
 - Hi-Z Technology: Quantum-well thermoelectrics
 - Teledyne: segmented BiTe/PbTe-BiTe/TAGS/PbSnTe
 - Teledyne: superlattice BiTe-PbTe/TAGS
- (2) Thermophotovoltaic Conversion
 - -Creare, EDTEK, Essential Research
- (3) Stirling-Cycle Conversion
 - Sunpower, Cleveland State University (microfabrication)
- (4) Brayton-Cycle Conversion
 - Creare: Microfabrication and Demo

Prometheus Nuclear-Electric Power/Propulsion System Development

- (1) Reactor Development: U.S. Department of Energy (Los Alamos)
- (2) Power Conversion System and JIMO Spacecraft: (\$50-million contracts awarded May 2003):
 - Boeing Phantom Works
 - Lockheed Martin
 - Northrop-Grumman
- (3) Ion Propulsion Thruster: JPL and NASA-GRC

iniodal Nacical Incimal Nocket Propulsion

Blueprint for 21st Century Space Travel

Launching with laser light

In-Space Propulsion: "Breakthrough" Concepts

- Nuclear fusion
- Interstellar ramjet
- Antimatter
- Breakthrough physics:
 - Wormholes
 - Warp drive
 - Antigravity

Propellant Tank

Antimatter Storage and Feed System

Beam-Core Engine System

IT'S THE LAW!