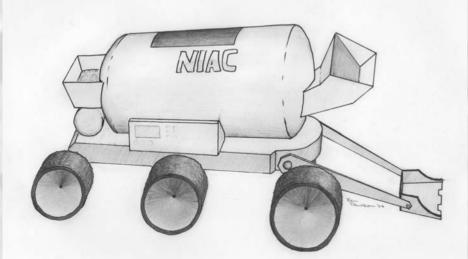


Biomining for In-Situ Resource Utilization

Darin Ragozzine Harvard University '03-'05-'04 NASA Institute for Advanced Concepts Student Visions of the Future Program Advisor: Dr. Sarah Stewart


Outline


- Concept
- Overview of Biomining and Bacteria
- Extraterrestrial Biomining
- Future Engineering
- Advantages of Space Biomining
- Applications to Potential Space Missions
- Conclusions

Darin Ragozzine NIAC Student Fellow

Concept Proposal

Use chemolithotrophic bacteria to mine extraterrestrial regolith for metals and other materials needed for In-Situ Resource Utilization.

Darin Ragozzine NIAC Student Fellow

Overview of Terrestrial Biomining

- Produces over ¼ of the world's copper
 - Mostly through passive "Heap leaching"
- Pretreat some gold ores (biobeneficiation)
 - Stirred tanks = bioreactors
- Biohydrometallurgy and Geomicrobiology
 - Lots of research and published information

Fig. 1.1. At Youanmi Mine, Western Australia, 120 mt/day of refractory-sulfidic gold concentrate are biooxidized by moderately-thermophilic bacteria to enhance gold recovery.

About the Bacteria

- Mostly Thiobacillus Ferrooxidans, Thiobacillus Thiooxidans, and Leptospirillum Ferrooxidans
 - Anaerobic
 - Autochemotrophic
 - Lithotrophic
 - Acidophiles (pH ~2-3)

Mesophilic, Autotrophic Bioleaching Bacteria: Description, Physiology and Role 231

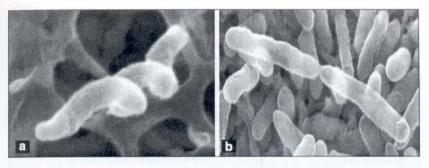


Fig. 11.1. A scanning electron microscope image of (a) *L. ferrooxidans* DSM2705 (magnification ≈18,000X) and (b) *T. ferrooxidans* ATCC33020 (magnification ≈15,000X).

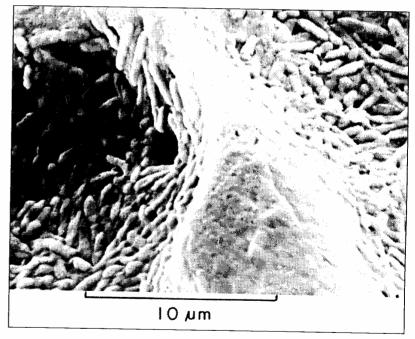
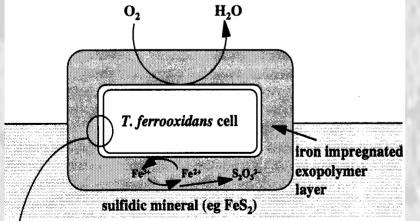
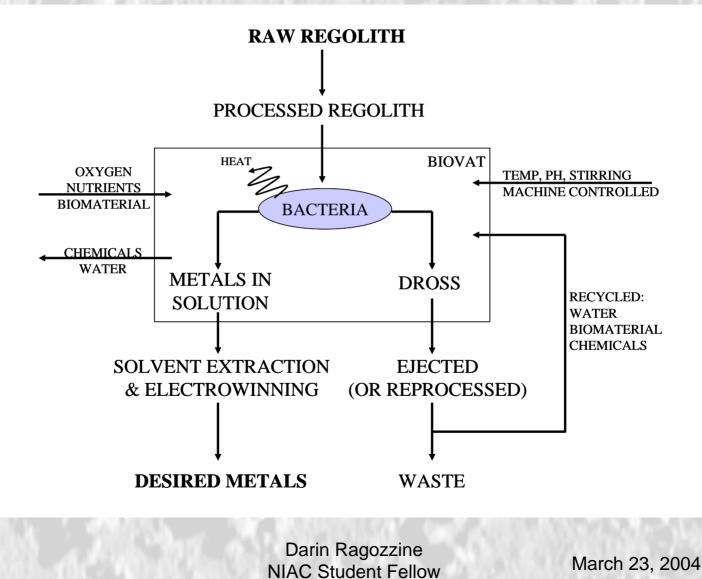



Fig. 14.1. Biofilm of *T. ferrooxidans* on the surface of a sulfur prill. Sulfur prills were colonized by *T. ferrooxidans* for two weeks. After this time, the samples were processed for scanning electron microscopy. The bar indicates 10 µm.

Darin Ragozzine NIAC Student Fellow

About the Bacteria



- Oxidize Fe(II) and (indirectly?) other metal sulfides
- Oxygen is used as the final electron acceptor
- Need relatively small amount of nutrients
 - Most nutrients are found in ores naturally
 - Carbon can be infused through CO₂ gas
- Studies show that extraterrestrial materials (meteors) are biofriendly

Darin Ragozzine NIAC Student Fellow

Biomining Flowchart

Future Engineering

- Biological
 - Already begun on Earth, seems fruitful
 - "Space-hardened" bacteria
- Genetic
 - Combine desirable traits from other organisms
- Chemical/Mechanical
 - Create a system that optimizes the biovat
- ECOLOGICAL
 - Create an entire autonomous self-regulating microcosm

Darin Ragozzine NIAC Student Fellow

Advantages (over other space-mining concepts)

- Simple
 Robust
- Nearly autonomous
- Low Power
 Already Developed

- Multiple Metals can be obtained
- Spinoffs benefit terrestrial biomining as well as geomicrobiological studies

Modular (small)

Advantages (over other space-mining concepts)

- Ideal for colony/base start-up
- Small amounts of metals from "low-grade" ore, i.e., raw regolith:
 - Copper, Cobalt, Nickel, Zinc, Gallium, Molybdenum, Silver, Manganese, Platinum Group Metals, Uranium, etc.
- Disadvantage: throughput is small
- Disadvantage: only certain minerals

Applications to Potential Space Missions

- Extracting metals for ISRU
 - Potentially for the Moon and Asteroids
 - (Bio)mining much better suited to Mars
- Small (1-2 m³) biovats can leach most of metals from sulfide ore in 1-2 weeks
- Optimize based on mission requirements
 - Extracting several "trace" metals from the Moon
 - Autonomous gold/platinum mining on asteroids
 - Copper production plant for Martian base

Darin Ragozzine NIAC Student Fellow

Applications to Potential Space Missions

Conclusions

- To zeroth-order, concept shows promise
- To first-order, concept is viable and useful
- Further development can begin immediately
- Future Study
 - Test bacteria on extraterrestrial meteors
 - Use most recent chemical/minerological data to assess productive capacity
 - Research supporting systems (solvent extraction, regolith collection and pulverization, other potential biological components, etc.)

Darin Ragozzine NIAC Student Fellow

Acknowledgements

- NIAC Staff
- Dr. Stewart and Harvard University
- Prof. Henry Ehrlich and James Brierley
- NASA Academy at GSFC 2003
- Alan Ragozzine and Ben Dawson
- Family and Friends

Some pictures and information from <u>Biomining</u>, edited by Douglas E. Rawlings. Background image from NEAR satellite.

Darin Ragozzine NIAC Student Fellow

Contact Information

Darin Ragozzine Harvard University '03-'05-'04 Physics and Astronomy & Astrophysics ragozzin@fas.harvard.edu Phone: 617-493-6617

A written report will result from this NIAC Student Grant

Darin Ragozzine NIAC Student Fellow