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The Idea: a Lorentz-Actuated Orbit (LAO)

The Lorentz force accelerates charged particles
traveling in a magnetic field. Can it be used to
control the motion of a spacecraft?

e-
 For example, Burns, Schaeffer, et al.; Cassini, Voyager data

— Measurements show that Lorentz resonances determine structures in
the rings of Jupiter and Saturn

— Micron-size particles
— A few volts of potential
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The Idea: a Lorentz-Actuated Orbit (LAO)

The Lorentz force accelerates charged particles
traveling in a magnetic field. Can it be used to
control the motion of a spacecraft?

* It's not an electrodynamic tether €

— Current in a tether interacts with the geomagnetic field: JxB

— Electrons traveling at cm/sec through a conductor

— This spacecraft's charge is a current (high charge at high speed): gvxB

— The LAO spacecraft is much more compact than a tether and
enables higher-agility attitude motions

Sibley School of Mechanical and Aerospace Engineering NIAC
Space System Design Studio 29 March 2006



Dynamics

Electrodynamics in a rotating frame

To see the video, use either link:
Low resolution: http://www.mae.cornell.edu/mpeck/SSDS/LAO/Isa 04-Mar-2006 20-23-24 magfield.avi
High resolution: http://www.mae.cornell.edu/mpeck/SSDS/LAO/Isa_04-Mar-2006_21-16-13 madfield.avi
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Dynamics

Electrodynamics in a rotating frame

— Lorentz Force, as you’ve seen it before: G/N
a
F=qE+qvxB

— But B rotates with the planet
* Rotating frame G; inertial frame N

« Position r and angular velocity of
Gw.rt. N @N

« Classically, orbital velocity is
inertial:

N 3 3
C/ ( C{ G/N

y = r = r+ao

dt dt
— This distinction matters because
the rotating B acts as an electric
field in N (the "co-rotational” field).
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Dynamics

Electrodynamics in a rotating frame

— We're interested in the case of E=0 o N

* Debye shielding masks E from
neighboring bodies (e.g. spacecraft)--
more later.

« Time-varying B (due to solar wind)
represents an E which may matter
and we will address in future work

— The Lorentz force becomes

because the co-rotational field in the
rotating frame is zero 4 B, ;

NIAC
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Dynamics

An LAQ's energy is not constant in an inertial frame

— Consider an equatorial elliptical orbit:

An LAO steals a little energy from a
planet’s rotation, like a flyby steals
some from its orbit
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Dynamics

An LAQ's energy is not constant in an inertial frame

— Earth's spin imparts a component along vV, adding energy

An elliptical LAO's energy can
grow, leading to Earth escape
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Dynamics

There's much more than just Earth escape...

— For example, quickly pre-
cessing polar orbits

— Cancel J,

— Sun synchronous at
many altitudes and
inclinations

— Geosynchronous at
LEO altitude!

— Low resolution:

By

( q ) WE"T To see the video, use either link:
il

http://www.mae.cornell.edu/mpeck/SSDS/LAO/Isa_04-Mar-2006 01-38-42 med.avi
High resolution:
http://www.mae.cornell.edu/mpeck/SSDS/LAO/Isa _04-Mar-2006 21-28-38 slow nocompression.avi

m
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Designing LAO-capable Spacecraft

Important Questions

— How much charge do you need?

— How much power does it take?

— What about the Debye sheath?

— How big is the spacecraft?

— How is charge established and maintained?

— What is the impact of this charge on spacecraft
subsystems?
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Designing LAO-capable Spacecraft

How much charge do you need?

Present and Technology-Stretch Capabilities for the LAO

Earth Escape
| B fromaGTo
I,'Eo, Solar System
Inclination
Escape
Change .

Stretch Technologies

Earth Escape
. from GTO

Aero Drag . ITEO_
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LEOSynch Change
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Charge per Unit Mass (q/m) [C/kg]
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Designing LAO-capable Spacecraft

How much power does it take?

— If it weren't for ionospheric plasma, no power--all that would
be required is to set the charge and forget it.

— However, discharge via the plasma means a constant current
IS necessary to maintain a desired potential.

- From SPEAR |, assuming ¢(¢)=—a(q—q,)+ 1,,., , 0.06 W/
at 200-350 km altitude. Much less at higher altitudes (0.001 -
0.0001 W/ at MEO?)

« Shuttle experiments (SEPAC): 5kV for <100 mA: 0.1 W/
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Designing LAO-capable Spacecraft

How much power does it take?

— So, maybe hundreds to thousands of Watts for a system of
interest.

— But it all depends on capacitance C
* High capacitance allows low voltage (maybe floating potential)
« Low capacitance requires high voltage
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Designing LAO-capable Spacecraft

How is charge established and maintained?

— Natural charging (due to plasma interactions and/or
photoelectric effect) can't offer more than a few kV.

— Large SC require hundreds of kV if the capacitance is small
« Spherical shell is an example
« Emitions or electrons via a plasma contactor
« Electron emission is a little easier and lighter, and it requires
no propellant

— Overcome discharge into the plasma
« Power required depends on altitude, area, space weather...

J:iél*ﬁz - "’If'"

400 kV Van de Graaff Generator L'Garde Conductive Sphere

*y‘l#

Faraday-Cage Capacitor Concept
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Designing LAO-capable Spacecraft

How is charge established and maintained?

— However, if a high-capacitance solution is found, e.g. one
that maintains high charge at the spacecraft floating
potential

* No Debye sheath?
* No power required?

— The Unobtanium capacitor
« Key research target

— Pocket
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Designing LAO-capable Spacecraft

How is charge established and maintained?

— Carbon Nanofoam

« Relatively new, semiconductive allotrope
of pure carbon; sometimes called “carbon
aerogel.”

« 400 m?/g due to nanoscale porosity and
convolutions

« 30 F/g (30,000 C/kg at 1 V?)
* High charge, low potential (q=CV)
— Spacecraft Architecture:

 Nanofoam resides on spacecraft surface

« Plasma interactions charge it to the
floating potential

* Manipulate voltage through conductive
connections to other materials with varying
dielectric constants?
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Designing LAO-capable Spacecraft

How is charge established and maintained?

— SEM Photographs of Nanofoam

« Electron beam was deflected due to high charging of sample
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Designing LAO-capable Spacecraft

What is the impact on other subsystems?

— Structural and Mechanical Requirements for the Sphere Concept:

« Conductive
— Acts as a Faraday cage, shielding components from differential charging

« Transparent for solar power (unless nuclear power is possible)
* Deployable (note that the charge inflates it)
 Nanofoam may be a MUCH better solution
— Payload Options
* Has to work through a conductive shell
« Maybe off until the spacecraft is in its operational orbit
— T&C Options
« Lasercomm through the sphere
« Antenna protrudes through sphere (ESD issues)
— Attitude Control
 Little direct impact (the Lorentz force is independent of attitude)
« Differential charge acts like a gravity-gradient effect, offering a
means of attitude control (that's another project...)
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Designing LAO-capable Spacecraft

How big is the spacecraft?

— The key sizing parameter is charge +
per unit mass (g/m), which is

proportional to the acceleration (Av) jgszar;;hfnkg;sssma
available temperature (i.e. altitude)

— Off-the-shelf capacitors are not | , P
generally useful 5 E e

— For a spherical spacecraft
surrounded by plasma,

. @'(0)=0

plasma : presheath

Sheath

edge 0 s

where 4, is the Debye length, the thickness of an oppositely
charged sheath that surrounds the charged body.
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Designing LAO-capable Spacecraft

Interactions with the Debye Sheath

— Stationary plasma forms an oppositely
charged sheath around a charged body
« Shields electric fields (no Coulomb
interactions)
* Thickness (1p,) Is 1 cm - 10 m in Earth orbit
— Benefits
 Huge increase in capacitance over the
vacuum case
« Balances electrostatic pressure (sphere's
material tensile strength does not limit
charge!)
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Designing LAO-capable Spacecraft

Doesn't the Debye Sheath Cancel the
Lorentz Force?

- NO

 The charge in the sheath is equal in
magnitude and opposite in polarity.

* Forces on the sheath are transmitted to the
spacecraft via Coulomb interaction.

« But particles in the sheath do not travel with
the spacecraft.

 So, the sheath does not feel the Lorentz force.

sheath Incident plasma

wake mm_-—-* v

Particles' velocity is more-or-less fixed in the plasma,
which travels with the geomagnetic field
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Some Applications

Attempt to bound worst-case design metrics

— Consider e- beam power and sphere radius as metrics

— Evaluate feasibility
» Helps identify required technology advancements

— Use spherical shell as a low-risk, high TRL technology
 Represents |least efficient charge-storage method

— Use worst-case charging power (Shuttle SEPAC results)
* Probably 10x conservative
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Some Applications

LAO Formations

— LAO spacecraft in a formation do not
interact through Coulomb forces

— Spacecraft with different electrical potentials and orbital altitudes
can orbit with the same period.

— New formations (3D paraboloid sparse-aperture telescope?)
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Vertical Spacing for Circular Prograde Orbits: ¢/m=0.001 C/kg
— Specs for a sphere:

10 m vertical separation in LEO
» 10 kg spacecraft
10 kV potential (1000 W)
* r=3 m sphere
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Some Applications

Rendezvous

qB“]” + 47 u+()B”1”J

— The potential function for
an LAO alters Kepler's

equation. 2 : : a s

— Charge one spacecraft, or | Prograce
each of a pair, and one S e T R e
will catch up to the other

at the same altitude.

— Retrograde orbits catch
up faster because the
velocity in E is greater.

Years for 1/2 Orbit

— Specs for a sphere:
» 1 year rendezvous (worst case)

0 i i i i

* 10 kg Spacecraﬁ: 0 2000 4000 6000 8000 10000
- 62 kV potential (6.2 kW) Attitude (km)
* r=4 m sphere Time fo Rendezvous (years) in Circular Orbit;
/m=0.001 C/kg
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Some Applications

Earth Escape

— It takes about 1 year for a g/m=5
Cl/kg spacecraft to escape earth
orbit, with appropriate phasing of

charge with true anomaly.

— This level of charge represents
high risk for the spherical-shell
architecture because the plasma
behavior is unknown, but its
prospect inspires other technical
solutions like the nanofoam.

— Specs for a sphere:
« 100 kg spacecraft
« 20 MV potential (2MW power bursts)
* r=50 m sphere

Maintaining charge is
useful only near perigee
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Some Applications

Jupiter Capture

— Jupiter's magnetic field is about 20,000 times more powerful than
Earth's.

— Its faster rotation (once every 9 hours) means that the co-
rotational field can contribute energy to an LAO quickly.

— For ¢/m=0.01 C/kg,

a spacecraft can
transition from a
parabolic orbit at
Jupiter to the orbit
of Ganymede in a
little over a year.

AT
35 4 4
7
=10

— Specs for a sphere: Time, seconds

« 1000 kg spacecraft Altitude above Jupiter (R=71,492 km) during 472 Day Orbit Insertion
» 440 kV potential

* r=15 m sphere
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Some Applications

Geosynchronous LEO Imaging Spacecraft

— Persistent coverage of a single longitude.
— Re-task a satellite to reach any longitude on Earth within 6
hours.

m/7 GT—-1

— Specs for a sphere:

» 100 kg spacecraft
« 5 MV potential (500 kW)
* r=/5m sphere
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Some Applications

Geosynchronous LEO Imaging

Spacecraft
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Some Applications

Continuous Lunar Free-return Trajectory

— Earth-moon-earth
once per orbit

— Apollo-era solution
for astronaut safety
(cf. Apollo 13)

— Lunar resupply
and/or science

~55 Clkg

— Specs:
« 10,000 kg spacecraft
« 340 MV potential (!)
 r=400 m sphere P
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Conclusions

— NIAC Phase | study shows that an LAO is even more feasible
than we originally thought

 Formations & rendezvous are near-term possibilities

« Others require higher capacitance because of specific-power
needs

« A technology path exists for extraordinary far-term applications

— The plasma environment can be managed

 The Debye sheath helps by increasing capacitance and
lowering (or eliminating) electrostatic pressure

« The Debye sheath does not cancel the Lorentz force

» Relevant applications can be achieved in the near term (sphere
specs bound power & size at the high end)
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Future Directions

— Perform more detailed hardware evaluation
« The spherical conductive shell concept solves many problems,
including ESD.
« Carbon nanofoam tests continue
* Hairy spheres

» |SS test of nanofoam? Sounding rocket opportunity with
AFRL? Cubesat demo?

— Perform plasma simulation and scaled testing

« Detailed evaluation of phenomena at high potentials, including
effects such as surface imperfections.

« Modeling
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