

Positron Propelled and Powered Space Transport Vehicle for Planetary Missions

Positronics Research, LLC, Santa Fe, NM

Work performed under Universities Space Research Association Research Subaward No. 07605-003-048

Presented at NIAC Phase I Fellows Meeting Atlanta, GA, March 7-8, 2006

Team Members

- Dr. Gerald Smith Principal Investigator
- Dr. John Metzger Consultant
 Mr. Kirby Meyer Engineer
 Dr. Les Thode Physicist

Mars Missions Require Large Payload Masses and Significant ΔVs to Reduce Radiation Exposure

- Studies* suggested payloads of 60,000 kg.
- Orbital mechanics suggest ∆V = 3.7 km/sec for 6-month, oneway transit to Mars.
- Rocket equation:

$$\Delta V = u_{eq} \ln \left(\frac{M_o}{M_b}\right) \cong I_{sp} g \cdot \ln \left(\frac{M_o}{M_b}\right)$$

- Assuming 40,000 kg for tank and engine, a chemical system to Mars could be 250,000 kg!
- Apollo payload ~44,000 kg. Result: Massively complex staged system, expensive.

*B.G. Drake, ed. "Reference Mission Version 3.0: Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team," <u>http://ares.jsc.nasa.gov/HumanExplore/</u> <u>Exploration/</u>EXLibrary/docs/MarsRef/addendum/index.htm, June 1998.

Studies Suggested Isp >1000 sec to Reduce System Weights

- High Isp, high thrust system limits propulsion types to:
 - 1. Nuclear-thermal (NERVA/Rover).
 - 2. Fusion (e.g. Daedalus).
 - 3. Antimatter.

JSITRON

4. Combinations of above.

Propulsion	lsp (sec)
Nuclear-thermal	800-3000
Fusion	10 ⁴ - 10 ⁵
Hybrid antimatter fusion	13,000
Direct positrons	10 ⁷

RESEARCH.LLC

Nuclear-thermal, NASA GRC

ICAN Antiproton-Catalyzed Microfission/Fusion (ACMF), PSU.

Daedalus (http://www.aemann.pwp.blueyonder .co.uk/)

Direct positrons (Sänger) (http://spectech.bravepages.com)

3/7/2006 Confidential and Proprietary

Why Positrons?

- Antimatter has highest specific energy in existence.
- No residual radiation.
- Large amounts can be made available.
- Promising storage developments.**
- We estimate approximately 4 mg of positrons for a one-way trip to Mars with a system mass of 100,000 kg (e+ not used for powering payload).

**discussion restricted under provisions of AFRL contract #F08630-02-C-0018

Goal: Investigate Candidate Systems That Can Use Positrons

PRLLC solid-core spacecraft

- Last positron concept developed by Eugen Sänger, 1935. Reflected gamma rays created thrust.
- There is presently no means to reflect gamma rays. They must be used to heat another propellant.
- Goal: delineate properties of positron-driven engine for fast access to Mars.
 - 1. Solid Core.
 - 2. Gas Core.
 - 3. Other concepts.

Solid-Core Engine and Power Systems

Positron Solid-Core Energy Source

- Flexible for both propulsion & power
- Outstanding performance capability
 - \bigcirc High I_{sp}, ~1000 sec, propulsion.
 - High thrust, comparable to chemical & nuclear-thermal engines.
 - High specific mass systems (P/M or T/W).
- Not an operating or shutdown radiation source
 - No shielding required.
 - Does not need to be separated from Crew/Payload.
 - No shutdown cooling required.
- Simple operation

DSITRON

• On-Off operation.

RESEARCH.LLC

- No complex control mechanisms.
- No criticality requirements.
- Nearer-term than other hi-tech options.

Positron Heater-Attenuator

- The Energy Source of a Positron-Powered System
- Similar in arrangement to NERVA/Rover configuration
 - Hexagonal elements appropriately supported for structural & vibration considerations.
 - Flow channels orificed to preclude viscosity instability.
- Element configuration
 - Central channel for positron injection.
 - O Propellant/coolant channels.
 - Materials tailored to ensure flat energy profile; i.e., flat exit propellant. temperature profile.
- Element model
 - Concentric annular shells.
- Power & material temperature determine number & geometry of elements.

Thermal-Fluids Rocket Engine Model

- A thermal-fluids model for concept analysis
 - Hot-bleed cycle.
 - Determines temp., pressure, & enthalpy at every point indicated.
 - Determines engine performance thrust, I_{sp}, power, nozzle geometry.
 - Determines e+ utilization (number and mass rates) and propellant utilization.
 - Estimates turbopump requirements.
 - Estimates ∆P thru heaterattenuator.
 - Dependant upon geometry of attenuator-heater.
- Model based on thermodynamic principals, energy balance and momentum balance.

Solid-Core Positron Rocket Results

- Analyzed two classes of rocket engines
 - Small engines 72 kN (16k lb_f) thrust.
 - Large engines 1000 kN (225k lb_f).
 - Results base-lined to results from NERVA/Rover.
- Results of analysis comparable to NERVA / Rover published results.*
- Geometry optimized for material surface temperatures up to 3000 K.

*Daniel R. Koenig, "Experience Gained from the Space Nuclear Rocket Program (Rover)," Los Alamos National Laboratory report LA-10062-H, May 1986

Large engine (100 kN) results. Specific impulse graph matches that for small engine.

Closed Brayton Cycle (CBC) Model Using Positrons for Power Plant and/or Martian Surface

- A thermal-fluids model for concept analysis
 - Variable He-Xe mixtures and compressor/turbine pressure ratio.
 - Regeneration (allows for 2-stage w/ reheat and inter-cooling).
 - Determines temp., pressure, & enthalpy at every point indicated.
 - Determines cycle performance efficiency and back-work ratio.
 - Estimates radiator size, regenerator size and heater-attenuator material temperatures.
 - Determines e+ utilization (number and mass rates).
 - Estimates ΔP thru heater-attenuator.
 - Dependant upon geometry of attenuator-heater.
- Model based on thermodynamic principles, energy balance and momentum balance.

Solid-Core Positron CBC Results

BWR

Pressure Ratio

Expect about 30% efficiency, 7 µg/hr

Results are for 100 kW_e available system power.

- Example: Efficiency of 25% means 400 kW of e+ power necessary for 100 kW output.
- Selection of pressure ratio is a trade-off of system mass and efficiency.
 - Efficiency decreases with pressure ratio.
 - Back-work ratio (BWR) increases.

8

Solid-Core Positron CBC Results (continued)

- Some performance parameters are also dependent on He-Xe ratio (density and molecular weight)
 - Material temperature
 - Component sizes

SITRO

- Optimal near He = 72%.
- Lower desired temperatures mean lighter materials such as titanium can be used.

He has a larger specific heat than Xe
(5.193 vs 0.159 kJ/kg-K.)
Xe density is larger than He (1.23 vs 40.5 kg/m3).

Gas-Core Concept

Gas-Core Rocket Should Exceed the Solid-Core's Performance and Meet Mars Mission Profile

- The theoretical maximum of e+ solid-core system lsp of 1150 sec.
- Mars mission spacecraft mass or TOF can be reduced if lsp is improved.
- Since solid-core system has proven similarities to nuclearthermal rockets, the gas-core should meet 1150 sec.
- The gas-core should meet ~100 kN thrust requirements and have reasonable efficiency.

1-D and 2-D Cylindrical Simulations; Open-Cycle Gas-Core Concept may be of One or Two Species

Two species

Suggests low molecular weight for high Isp, but high density needed for gamma-ray attenuation

Attenuation Simulations Provided An Approximate Radius of Engine for Single Gas

Analytically:

$$E_{ABSORBED} = E_0 (1 - \exp(-\mu\rho r))$$

- Determined that efficiency would be too low with He or H2 (single gas/liquid) unless pressures exceeded material limits.
- Numerically used GEANT4 to get attenuation data for LN₂.
- Results show minimum of R=25 cm for >50% efficiency. Used R=40 cm. (75%). Here, gamma ray source must be located at center.

Two Codes were Used – a 1-D Euler Equation solver and a 2-D CFD commercial package (ANSWER)

SYSTEM CODE (in-house **ANSWER** (commercial FORTRAN code) FORTRAN, JAVA code) Assumes laminar, inviscid Can handle laminar, turbulent, viscous flow. flow. **Provides 2-D cylindrical** Solves throat geometry. solution. Provides 1-D solution as input to CFD codes. Includes wall effects, annular flow vortices. Validation

- Flow is highly turbulent but inviscid since N_2 has low viscosity.
- Tests show turbulent solution behaves laminar-like w/o diffuser at inlet, so ANSWER solution should match favorably to System Code.

Typical Mesh Generated by System Code is Directly Used in ANSWER (Single-species)

Results Using For Mars Mission (~300 MW) Show High Thrust, Low Specific Impulse with Constant Heat Density

Values are shown for nozzle expansion ratio = 30.

- Reducing flow rate < 100 kg/sec (T = 100 kN) may provide >1000 sec lsp.
- But up to this point, we assumed a constant heat source. Now we address a
 point source with dependence of mass density:

$$E_{ABSORBED} = E_0(1 - \exp(-\mu\rho(r)r))$$

Validation of 1-D Results in 2-D CFD Code. Mass Density Interface Moves Upstream.

Single species (LN2)

- "High" Isp (> 200 sec) only occurs with poor efficiency (Pa/P₀ < 10%)
- Single-fluid concept may be infeasible since high density region moves away from energy source.

ESEARCH, LLC

OSITRO

Two-Fluid Concept Variations

- Vortex Configuration
 - Will not work because evidence shows heating changes density profiles, causing vortex to destabilize.

Flow-thru Configuration

- May behave similar to singlefluid if Xe mass flow rate is significant, reducing I_{sp}.
- Work in progress.
- Cartridge Configuration
 - e+ encased with Pb annihilate, creating plasma.
 - Lower energy photons heat H2.
 - Early studies show excellent promise with lsp = 2600 sec, with Pb/H2 flow ratio 5:1.
 - Have to examine effects of varying mass density in system, transport to walls, pulsed behavior.

Other Concepts

Solid Ablation Concept as a Realistic Sänger Rocket Keeps High Density Close to Positron Source

- Concept: 21st century Sanger rocket, where solid ablation material replaces unrealistic photon reflector.
- Small prompt radiation in direction of spacecraft still makes system attractive.
- Intrinsic 50% efficiency must be compared against valid gas-core concepts.

Task: Find Optimal Ablation Material and Geometry for 511 keV Gamma Rays

Heat Density Profile in 10 cm SiC using 2e22 e+

- Minimize penetration depth to increase local energy density at surface for ablation.
- 511 keV gamma rays have long attenuation length.
- Encase e+ cartridges with lead. Lead plasma radiating at lower eV ablates solid propellant such as SiC.* Has similarity to gas-core cartridge concept.

*W. Lance Wertham, "Antiproton-Catalyzed Microfission/fusion

Space Propulsion, "M.S. Thesis, Dept. Aerospace Engineering, PSU, 1995.

Phase II Prospectus

• Solid Core Work:

- A transport design/analysis effort to determine a system that will allow relatively flat radial and axial power profile.
- Use of codes such as GEANT for attenuation studies. Material identification.
- CFD analysis for the propulsion engine.
- Efficiency studies of an integrated power plant with engine.
- Experimentally design and analyze an electrically-heated heater attenuator w/ gas flow for comparison against code.

Gas-Core Work:

- Investigate pulsed behavior of cartridge scheme.
- Examine wall temperature effects.
- Ablative Sänger Concept:
 - Study penetration depth of gamma rays and derive ablation material(s).
 - Investigate non-impulsive mission scenarios.

Conclusions

Positron-based engines are "thick".

O"Thick" means gamma rays travel further to interact with propellant.

Solid-Core engine will work.

O More detailed studies required.

- Gas-core concept
 - High density gas must be kept close to high-energy gamma rays.
 - Means of reducing energies of photons to allow low-Z, high I_{sp} propellant should be investigated.

 Ablative Sänger engine promising based on previous work at Penn State.

