Bio-Electricity for Space Exploration PI: Matthew Silver Co-I: Kranthi Vistakula

Presentation to the NIAC Conference March 6, 2007

IntAct Labs LLC

What is Bio-Electricity?

• Electrical Power Critically Constrains Space Missions

 Many Biological Molecules and Microbes have Interesting Electrical Properties

- These can and have been studied and exploited
 - Biological Solar Cells, Microbial Fuel Cells

 Biological Power Systems can Revolutionize Space Exploration

Cambridge, MA

Presentation Outline

1. Project Overview

2. Database and Design Space

Application and Research Areas

 a. Microbial Fuel Cells
 b. Power Skins

4. Conclusions and Phase II Goals

Team

Int Act Labs LLC

- Matthew Silver, Principal Investigator
- Kranthi Vistakula, Co-Investigator
- Ned Calder, Project Manager

- Joe Parrish (Space Systems Design)
- Liping Sun (Bio-culturing)
- Edison Guerra (Machining, Fabrication)

- Professor Jeff Hoffman, Space Systems Lab
- Professor Tom Knight, CSAIL and Synthetic Bio
- Noah Taylor, Biology Department
- Yarling Tu, Biology Department

Additional Thanks To

- Jon Halpert, MIT Chemical Engineering
- Derek Lovely, UMass Amherst
- Chris Lund, Images and Visualizations

© IntAct Labs

Bio-Electric Space Exploration Research Summary

<u>Vision</u>:

New space power paradigm based on biological molecules and mechanisms. From Mechanisms to Architectures.

<u>Disciplines</u>:

Biotechnology, Synthetic Biology, Electrical Engineering, Space Systems Design.

Cambridge, MA

A New Paradigm for Space Power

Current Power Paradigm	Bio-Electric Power Paradigm
 Silicon-Base Solar Voltaic Windmills H₂ or CH₄ Fuel Cells Nuclear Thermal, RTG Li Batteries 	 Biological Solar Voltaic Piezo Electric Protein Skins Microbial Fuel Cells Electric Greenhouses Photo-Active Fuel Cells
 Complex Manufacturing Degrade with Time 	 Growable, Scalable Power Self-Healing Systems
 Labor-Intensive Repair Large, Bulky Inflexible once in mission 	 "Throw-away" power sources High P/W Energy Scavenging Unified Life Support & Power
Fully Inorganic	Fully Biological

© IntAct Labs

Database: Biological Components

Class/Genus	Description	Input	Output
Rhodopsins	Photo-Active membrane protein	Solar Radtion: 450- 700nm, 560nm peak)	Electrochemical gradient, H ⁺ , Cl ⁻
Prestin	Mechano-Sensitive membrane protein	Pressure, Vibration < 100 kHz	Electrochemical gradient Cl-
Transient Receptor Potential Proteins	Heat-Activated ion channel	Temperature activation threshold	Electrochemical Grandient,Ca ⁺
Geobacter	Iron Reducing electrigen microbe	Acetate, aromatic compounds	CO ₂ , electrons
Rhodoferax	Iron Reducing electricigen microbe	Lactates, acetates	CO ₂ , electrons, other products
Geobacter Pili	Microbial Nano-Wire proteins	electrons	electrons

© IntAct Labs

From Molecules and Microbes to Applications

→ Microbial Fuel Cell, Bio-Electric Chamber

→ Dual Photo-Active/Organic Microbial Fuel Cell

→ Biological Solar Cell

→ Charge Storage Device, Ultra-Capacitor

© IntAct Labs

From Molecules and Microbes to Applications

→ Charge Storage Device, Ultra-Capacitor

© IntAct Labs

Presentation Outline

Microbial Fuel Cell, Bio-Electric Chamber

© IntAct Labs

Application Area 1: Microbial Fuel Cells

<u>Applications:</u>

Life-Support and Power Production; Electric Greenhouses; Growable Solar Power

<u>Electricigen Microbes</u>

- Single Strain (3.6 W/m²) [Lovely, 2006]
- Extant Communities (4.3 W/m²) [Rabaey, 2005]
- Controlled, Tailored Communities (Goal)

© IntAct Labs LLC

selective membrane

Geobacter

Courtesy: Geobacter.org er Rhodoferax on an electrode

Batch-Mode Microbial Fuel Cells at IntAct Labs

Cambridge, MA

Upper Bound Power Estimate

Waste Streams	Kg/day
Dry Human Waste	0.72
Inedible Plant Biomass	5.45
Trash	0.556
Packaging Material	2.017
Paper	1.164
Tape	0.246
Filters	0.326
Miscellaneous	0.069
Organic Waste Stream	10.55

Estimated wastes for low-carb diet exploration mission. Crew size = 6 (NASA Waste Processing and Resource Recovery Workshop)

$$C_{6}H_{12}O_{6} + 6H_{2}0 \rightarrow 6CO_{2} + 24H^{+} + 24e^{-} \qquad E^{0} = 0.0014V$$

$$6O_{2} + 24H^{+} + 24e^{-} \rightarrow 12H_{2}0 \qquad E^{0} = 1.23V$$

Interplanetary Transit

1. One Crew + Trash: 2.5 kW-hrs/Day (~100W)

2. Six Person Crew + Trash + Biomass: 29.7 kW-hours/Day (~1 kW)

3. C0₂ Recycled to Algal Growth: 1kg of algae ~ 4 kW-hrs (150W)

Growing Power on Mars

- 1. High-Rate Algal Growth: 0.025 kg/M^2 Day (earth) 6x on mars
- 2. Algal Field: ~ 2-4 times power per area of solar cell + 02
- 4. Casing: Protein-Based Plastics
- 3. Photo-Fuel Cell Possible with Electron Mediators (cyanophyta species)

 $CO_2 + H_20 + Sunlight$ –

Cambridge, MA

Developing Bio-Electric Chambers for Space

- **Synergies** with other bio-electric apps (Geobacter species)
- *Full Oxidation* of organics (*Catabolic Engineering*)
- *Flow-Through* Bioreactor Design (*Tubular Form*)
- **Zero, Low-G:** Functionality (*Membrane Biofilm*)
- Increase: Anode surface area (Fractal surfaces, Gold Nano-particles)
- *Increase:* Respiration rates (*Genetic Engineering*)
- Fully Growable Systems: Bio-fabricating growth chambers (bio polymers)

© IntAct Labs

Potential Full Reduction Pathways

Bio-Chambers in Life Support

Flow-Through Bio-Reactor Design

© IntAct Labs

Cambridge, MA

0.1

0.2

0.3

0.4

Experiment 1: Microbial Fuel Cell Anode Optimization

- Objective:
 - Test fractal anode surface structure; Gold Nanoparticles; Gold Foam
 - Test Chamber for Photo-active Geobacter sulf.
- Motivation:
 - Quantify power output, fractal anode design:
 - Gold Nano-Particles (fractal area), Gold Foam
 - Verify and Estimate power output G. sulferreducens
 - Test Chamber for Experiment 3

Methods

- Geobacter sulfurreducens
- Single-chamber, Batch Mode MFC
- Carbon Cloth Air Cathode
- PEM: Dupont Nafion® 117

Progress

- MFC Fabricated, G. sullf. Cultured, Anodes Fabricated

R.625

Experiment 2: Expression of Rhodopsin in Geobacter

Objective

- Express of rhodopsin (photoactive proton pump) in *Geobacter* (microbial fuel cell species)
- Motivation
 - Initial step towards *coupling* rhodopsin proton pump with unique Geobacter electron transport proteins (pili)
 - Photo-activated metabolic change
- Methods
 - Standard Protein Expression and Verification
 - Photo-activated experiments in prototype microbial fuel cells

© IntAct Labs

Presentation Outline

© IntAct Labs

Application and Research Area II:

Bio-Electric Power-Skin

Goal: Novel energy scavenging skin based on ionic potential difference created by membrane proteins

Specific Benefits

- Abundant source of 'free' energy
- Orders of magnitude more sensitive than inorganic materials
- Proteins have high power to weight ratios
- Architecture applies to other mechanisms:
 - Examples: thermal active, photoactive

<u>Applications</u>:

– Distributed sensors, EVA, space habitats

Image: Chris Lund © IntAct Labs

Sources of Power

Martian Wind

- Pressure, Piezoelectric micro-turbines
- Similar wind speeds to Earth, but lower density .022 kg/m³

P= $1/2^* \rho^* A^* v^3$ assume: 7m/s \rightarrow 3 W/m^2

Mechanical or ambient structural vibrations

- Developing general model
- Example: Vibrating Machinery
 - Observed vibrations at 120hz & acceleration of 2.25 m/s^2

$$P = \frac{m\varsigma_c \omega_n \omega^2 (\omega/\omega_n^2)^3 Y^2}{(2\varsigma_T \omega/\omega_n)^2 + (1 - ((\omega/\omega_n)^2)^2)^2}$$

Electrical Potential

- 3 Chloride Ions Separated each Vibration

P= Ej*f= 1/2*C*V²*f

© IntAct Labs

With permission for educational use only from www.the-cochlea.info by the authors G.Rebillard/S. Blatrix

Potential Applications

• Distributed Sensing

- ~100 µW/node
- Continuous Power Scavenging
- "Throw-away" power source
- EVA
 - Surface area ~ .7 m²
 - Power on the order 1 W
 - Multiple Sensors without Wiring
- Large Scale Skin

© IntAct Labs

- Planned Mars structures/domes (d~30m) surface area ~3000 m²
- Power on the order 1 kW

Covering Structures on mars

Scaling and Optimization

Approaches to Scaling

- Flexible Electrodes
- Micro channels
 - Lipid bilayers with protein are embedded into micro channels
- Liposomes
 - Liposome's sandwiched between electrodes

Redox reactions

 Conversion of ionic potential into electric potential using re-dox mechanisms

Chris Lund © Intact Labs

Optimization

- Increase Protein Output
- Genetic engineering
- Skin Robustness

Powerskin Prototype

• Objective

- Measuring power output by developing a Prestin force sensor
- Procedure
 - Express and purify Prestin
 - Incorporate Prestin in tethered lipid bilayer
 - Construct sensor
 - Measure potential difference generated

Progress

- Sensor architecture developed
- cDNA of Prestin acquired from Dallos
 Lab of Northwestern University
- Expression and purification experiments are in process

Cambridge, MA

Presentation Outline

© IntAct Labs

Bio-Electric Power Architectures

Image: Chris Lund

Phase I Accomplishments

- **Vision:** New space power paradigm based on biological molecules and mechanisms. From Mechanisms to Architectures.
- Database

Design space categorized; Database created and made accessible online

Bio-Electric Chambers

Conceptual design and architecture; Calculated estimated power levels; Prototype Batch-Mode Reactor built

Remaining: Data Collection; Rhodopsin Experiment

Power Skins

Conceptual design and architecture developed; Calculated estimated power levels; Prototype bio-sensor began

Remaining: Power Model; Patch Clamp Biosensor Experiment

Phase II

- Systems Architecture
 - Integrate component architectures into systems level architecture
- Component Development
 - Combined Algal Fuel Cells (solar power) with MFC
- Microbial Fuel Cell Development:
 - Develop and test compact flow-through MFC for zero and low G
 - Elaborate Bio-polymer—grow able solar cell concept
- Power Skin Scaling
 - Test scaling mechanism for power skin
 - Synthesize structural, environmental control proteins into power skin

Questions?

IntAct Labs LLC 247 Third Street Cambridge, MA 02142 Email: info@intactlabs.com Phone: 617 995 5675 Fax: 617 868 6682