PLANETARY-SCALE ASTRONOMICAL BENCH

NIAC Phase I Study November 1999

Timothy L. Howard, *Principal Investigator*Lee Gutheinz, Jack Sanders-Reed, Carl Tuttle, Bill Witt

PAB: WHAT IS IT?

AN ASTRONOMICAL OBSERVATORY

- -- USING JOVIAN LAGRANGE POINTS AS LONG-TERM SITES FOR ASTRONOMICAL INSTRUMENTS
- -- LOCATIONS OF NATURAL ORBITAL STABILITY
- -- USE SOLAR-SYSTEM SCALE BASELINES FOR COOPERATIVE MEASUREMENTS
- -- CONCEPT STUDY: EXAMINE POTENTIAL APPLICATIONS, BASIC FEASIBILITY ISSUES, SYSTEM CONCEPTS AND TECHNOLOGY ISSUES

-- ENVISION NOMINAL TIMEFRAME FOR DEVELOPMENT 10-40 YEARS

PAB
"STATIONS"

Nomenclature:
JL4, JL5 (generically, JLx)

PAB BASIC INFO

STATIONS -- JL4 (leading), JL5 (trailing)
60 deg. ahead/behind JUPITER
E1 (Earth locus)

ORBIT: 5.2 AU (radius) PERIOD 11.86 yr
[1 AU = 778 million km]

JL4-JL5 DISTANCE = 9.01 AU (nominal)

JLx-E1 DISTANCE = 4.2 - 6.2 AU (periodic)

SOLAR IRRADIANCE AT 5.2 AU ~ 50 W/m²

LIGHT-TRAVEL TIME:

JLx-E1: 34.9 - 51.6 min. JL4-JL5: 74.9 min.

HOHMANN ORBIT TRANSFER TIME = 2.6 yr (one-way)

LAUNCH WINDOW ~ 13 MONTHS

(looking down from North Ecliptic Pole; rotation CCW)

PAB APPLICATIONS

- PARALLAX-BASED ASTROMETRY
- CONVENTIONAL ASTRONOMICAL IMAGING & SPECTROSCOPY
- MICROLENSING
- LONG-BASELINE INTERFEROMETRY
 RADIO, AND OPTICAL/IR
 FOR ASTROMETRY AND SYNTHESIS IMAGING
- SOLAR SYSTEM SCIENCE
 VIA LOCAL PROBES TO TROJAN ASTEROID POPULATION
 SENSORS TO MONITOR INTERPLANETARY ENVIRONMENT
- GRAVITATIONAL WAVES
- OTHER LONG-BASELINE DYNAMICS STUDIES

PAB SCIENCE: ASTROMETRY

- ~9AU FOR PARALLAX-BASED RANGE
- RANGE REACH DEPENDS ON ANGULAR RESOLUTION
 -- AT 10⁻¹² RAD (0.2 MICROARCSEC), R > 10 MPC
 (c.f. ~8500 PC TO GAL. CENTER, 600000 PC TO M31)
- CURRENT TRENDS
 - -- "FEW" MICROARCSEC ~ 2005 (SIM, GAIA)
- ASTROMETRIC 'DEPTH SENSING' ENABLED VIA SIMULTANEOUS IMAGING
 - -- RANGE RESOLUTION
 0.1 PC at ~1000 PC

SKY COVERAGE

(after 1/4 period)

Full sky is available for viewing in 1/2 period ~ 6 years

APERTURE SYNTHESIS

- USE OF JLx POINTS ANALYZED FOR APERTURE SYNTHESIS
- INTERFEROMETRY ACROSS FULL 9 AU BASELINE THEORETICALLY POSSIBLE BUT IS SEVERELY SIGNAL-STARVED
 - -- LIMITS CAN BE DERIVED IN TERMS OF AN "AREA-TIME" PRODUCT (COLLECTING AREA x INTEGRATION PERIOD)
 - -- SCALES AS (BASELINE)² AND DEPENDENT ON SOURCE TEMPERATURE AND WAVELENGTH
- TYPICAL VALUE: T(blackbody) @ 6000K (sunlike star)

 BASELINE 10 AU : $A\Delta T = 10^{15}$ m²-sec, 1 micron
- PRACTICAL INTEGRATION TIMES LIMITED TO ~10⁵ sec
 -- ROTATION OF BASELINE CHANGES RESOLUTION SIZE
- EFFECTIVE USE OF LAGRANGE POINTS --> "LIBRATION-PAIR" ORBITS

LIBRATION ORBITS

• LIBRATION ORBITS STABLE ABOUT JLx POINTS

- JLx WIDTHS UP TO ~ 0.16 AU, ARC LENGTHS ~ 60 DEGREES
- LIBRATION PERIOD ~ 150 YEARS, MOTION ABOUT JLx IS SIMPLE HARMONIC TO FIRST ORDER IN RADIUS AND LONGITUDE
- PLACE PAIRS (OR LARGER MULTIPLES) OF APERTURES IN SYMMETRIC POSITIONS ABOUT ONE OR BOTH JLx POINTS
- NATURAL ORBITAL MOTION PLUS SLOW LIBRATION DRIFT DEVELOPS (u,v) COVERAGE OVER TIME

SNR AND RADIOMETRY FOR INTERFEROMETRY

- CALCULATE BOTH A RADIOMETRIC AND A RESOLUTION RANGE REACH
 - -- RADIOMETRIC RANGE REACH SET BY SOURCE FLUX,
 SPECTRAL BANDPASS CONSISTENT WITH APERTURE SYNTHESIS
 - -- RESOLUTION RANGE REACH (APERTURE SYNTHESIS)
 SET BY BASELINE TO JUST RESOLVE AT WAVELENGTH
 - -- USE 1 PHOTON/SEC AS LIMITING CASE,
 SELECT SEPARATION AND/OR APERTURE TO MATCH THEM
 - RESULTS SUGGEST 0.01 AU, 100M APERTURE A CLOSE MATCH (2X)
 - -- A∆t ~ 2X10⁸ AT 1 micron
 - -- ANGULAR RESOLUTION 10⁻¹⁵ rad AT 1 micron
 - -- EXCEEDS ANY CURRENT PLANS
 - -- RESOLVE SUNLIKE STARS AT ~ 10 Mpc

BASELINE COVERAGE

- LIBRATION-PAIR MOTION DEVELOPS REASONABLE BASELINE COVERAGE
- USE OF ITERATIVE DECONVOLUTION ALGORITHMS TO CLEAN THE IMAGE
- LIBRATION ORBITS ABOUT OTHER SOLAR SYSTEM LAGRANGE POINTS
- JLx POINTS HAVE LARGER REGIONS OF STABILITY, LOWER ANGULAR RATES
 - -- .002 AU Max (Earth)
 - -- < .001 AU (Mars)

RATES 6x - 8x LOWER FOR JLx vs ELx, MLx

- 0.001 AU initial spacing
- 2 ea. (JL4A+B, JL5A+B)
- short λ scan $0.75^*\lambda_0$
- long λ scan 1.35* λ_0
- 1/3 ORBIT

PAB SCIENCE: MICROLENSING

- GRAVITATIONAL LENSING WHERE SOURCE IS NOT RESOLVED; CAUSES BRIGHTNESS CHANGE
- CURRENTLY GROUND-BASED WITH
 1- 2 M APERTURES, MULTI-BAND
 PHOTOMETRY AT ~1-2% PRECISION

- TIME SIGNATURE OF LENSING OBJECT IS SYMMETRIC AND ACHROMATIC
- TIMESCALES: ~DAYS (UP TO 1 MONTH) FOR STELLAR-MASS OBJECTS; HOURS TO ~ 1 DAY FOR PLANET OBJECTS

- SINGLE OBSERVATIONS DO NOT RESOLVE LENSING OBJECT MASS, DISTANCE, MOTION INDEPENDENTLY
- PARALLAX OBSERVATIONS + DOPPLER SPECTRAL ANALYSIS COULD PROVIDE FULL SOLUTION

SYSTEM CONCEPTS & SIZING (1)

- STATION LOCATIONS: JL4, JL5, EL4
- MULTIPLE INSTRUMENT POSSIBILITIES ON-STATION
- SYSTEM BASING OPTIONS:
 - -- FREE-FLYERS 1 HYBRID
 - -- MONOLITHIC
 - -- ASTEROID (?)

CANDIDATE INSTRUMENTS

APPLICATION	**	SIZE	JL4	JL5
CONVENTIONAL ASTRONOMY		10m	х	
ASTROMETRY	х	>2m	X	X
APERTURE SYNTHESIS	x	>10m	хх	xx
MICROLENSING	x	>1m	Х	X
ASTEROID STUDIES		>1m	х	
ROBOTICS (EXPLORATION)	x	n/a	x	X

^{** =} dedicated aperture

SYSTEM CONCEPTS & SIZING (1)

- TOTAL SYSTEM MASS USING FULL "CANDIDATE INSTRUMENTS" LIST
 - -- ROM ESTIMATE FOR A "REALITY CHECK"
 - ~30000 kg ea. STA. (JL4, JL5)
 - -- SIZING RULES: AREAL DENSITY 10 kg/m2 (NGST),
 - + INSTRUMENT ELECT./METROLOGY (100/200 kg)
 - + SPACECRAFT OVERHEAD (3.3x P/L SUPPORT + 0.55xTOTAL)
 - -- INCL. STATIONKEEPING FUEL ALLOC. BUT NOT TRANSFER STAGE CONSERVATIVE, CAN PROBABLY REDUCE BY >= 2X
- LOGISTICS ADVANTAGES TO SOME SHARED SERVICES / FUNCTIONS
 - -- CENTRAL POWER AND DATA RELAY, STATION-STATION METROLOGY
 - -- LOCAL POWER, COMM AND FINE-SCALE METROLOGY
- SYSTEM WOULD BE DEVELOPED / BUILT UP INCREMENTALLY

ENVIRONMENT / DISTURBANCES

SMALL-SCALE DISTURBANCES:

-- METEOROID FLUX ~ 10⁻⁵ N -- RESIDUAL GAS 10⁻¹⁰ -- SOLAR WIND 10⁻⁶ -- RADIATION PRESSURE 10⁻⁵ -- COSMIC RAYS 10⁻⁹

GRAVITATIONAL PERTURBATIONS:

-- SATURN, 10⁻⁷ m/s²

SMALL-SCALE METROLOGICAL EFFECTS:

-- STELLAR ABERRATION ~ 40 μrad

-- GRAVITATIONAL BENDING OF LIGHT 10 prad - 0.1 μrad

DELTA-V REQUIREMENTS

-- STATIONKEEPING (~1/DAY) < 0.01 m/s/day -- ORBIT ADJUSTMENT (~1/YR) ~ 15 m/sec/yr (LIBRATION TRUNCATED)

TECHNOLOGY DRIVERS (1)

LARGE OPTICS

- -- PAB SHOULD HAVE > 10M OPTICS, 100M DESIRABLE
- -- 10 100 M SPACE OPTICS DEVELOPMENT, SEVERAL GROUPS
- -- RECENT LARGE OPTICS DESIGNS: FREE-FLYER STRUCTURES
- -- AREAL DENSITY: WORKING ON 15 kg/m²; EXPECT 10 BY ~2005; WOULD LIKE < 1 FOR PAB

POSITION & TIME MEASUREMENT

- -- ~1m STATION-STATION TO SUPPORT PARALLAX TO >10000pc
- -- SUB-WAVELENGTH POSITION MEASUREMENT FOR APERTURE SYNTHESIS
- -- TIME RESOLUTION TO 10⁻¹⁵ SEC; LIKELY EXTRAPOLATION OF CURRENT TECHNOLOGY (10X)

TECHNOLOGY DRIVERS (2)

SEPARATED-SPACECRAFT INTERFEROMETRY

- -- NOT CURRENTLY ACHIEVABLE AT >~ 100m BASELINES
- -- PREVIOUSLY PROPOSED MISSIONS MAY EXPAND WORKING BASELINES TO FROM ~1km TO ~1000 km (ST3, DARWIN, PI)
- -- VERY-LONG-BASELINE OPTICAL/IR INTERFEROMETRY NEEDS
 DEVELOPMENT OF L.O./CORRELATION METHODS (c.f. RADIO VLBI)
- -- ALTERNATIVE WOULD BE DIRECT AMPLITUDE/PHASE RECORDING

SPACECRAFT ROBOTICS

- -- PAB CAN TAKE ADVANTAGE OF LIKELY DEVELOPMENTS IN "SMARTER" SPACECRAFT
- -- AUTONOMOUS NAV, PROXIMITY OPS/DOCKING, INSTRUMENT SERVICING, DIAGNOSIS/SELF-TEST

OTHER SPACECRAFT SYSTEMS

- -- FINE POINTING/TRACKING, OPTICAL COMM/COMPUTING
- -- MORE EFFICIENT PROPULSION

EXOSOLAR PLANET DETECTION

- NARROW-ANGLE ASTROMETRY
 - -- MEASURE REFLEX MOTION OF STAR ABOUT BARYCENTER
 - -- 3 μarcsec FOR 1 M_{EARTH} ,1 M_{SUN}, 1AU @ 1 pc, SCALES ~ RANGE
- MICROLENSING
 - -- PARALLAX EFFECT --> TIME OFFSET BETWEEN LENSING SIGNATURE, ~ 10s OF DAYS
 - -- SIZE OF EFFECT SCALES WITH PLANET, EARTH-SIZED PLANETS DETECTABLE
 - -- USE IN COORDINATION WITH ASTROMETRY
- GOOD LOCATION FOR A NULLING INTERFEROMETER (OUTSIDE ZODIACAL CLOUD)
- OTHER METHODS POSSIBLE, e.g., OCCULTATION

ASTEROID STUDIES & PRECURSOR MISSIONS

CATALOGUED ASTEROIDS (C. 12/98) (VIEW FROM ABOVE ECLIPTIC)

- TROJANS REPRESENT EARLY SOLAR SYSTEM MATERIAL
- LIKELY ANALOGS: "DEAD COMETS"; CARBONACEOUS CHONDRITES, POSSIBLE RESIDUAL WATER ICE
- SEVERAL HUNDRED KNOWN, SEVERAL INTERACTING GROUPS; TYPICAL SIZE
 ~ 15 km
- •CONSIDER SINGLE LAUNCH TO ONE JL POINT (JL4 STRAWMAN)
- ROBOTIC EXPLORATION OF TROJAN ASTEROIDS & LOCAL ENVIRONMENT
- SHOULD INCLUDE ASTRONOMICAL INSTRUMENTATION