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MOTIVATION 

 
Characteristic Velocity Increments for 

Planetary Transfer Missions* 
 
      Earth orbit to: 
 

Mars orbit and return:  1.4×104 m/s 
 

Venus orbit and return: 1.6×104 m/s 
 

Jupiter orbit and return:   6.4×104 m/s  
 

Saturn orbit and return:   1.1×105 m/s 

Rocket Equation: 
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    Increase delivered payload: 

 
• Match propellant exhaust 

velocity, Ue, to mission ∆V 
 

• High Isp for planetary and deep 
space exploration missions 

 
• Variable Isp to optimize mission 

profiles, reduce propellant mass 

*Impulsive, minimum propellant semiellipse trajectories 
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CURRENT PROPULSION SYSTEMS 

CHEMICAL: 
 
 

 
 

ELECTRIC: 
 
 
 
 
 

NUCLEAR: 

• HIGH THRUST 
• REQUIRED FOR LAUNCH SYSTEMS 
• LOW EXHAUST VELOCITY (< 5000 m/s) 
• INEFFICIENT FOR DEEP-SPACE (Ue << ∆V) 

 
• LOW THRUST (mN – N) 
• HIGH EXHAUST VELOCITY  

- MPD: 5×104 m/s 
- ION: 105 m/s 

• EFFICIENT IN-SPACE PROPULSION 
• LOW ACCELERATION, LONG TRIP TIMES 

 
• HIGH THRUST 
• MODERATE EXHAUST VELOCITY (<104 m/s) 
• ENABLING FOR NEAR-TERM MISSIONS 
• Ue << ∆V FOR DEEP SPACE MISSIONS 
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IDEAL DEEP-SPACE PROPULSION SYSTEM: 

LONG LIFE, MODERATE THRUST, HIGH Isp 

SYSTEM PROPERTY:        REQUIREMENT: 
 
 

   HIGH Isp       PLASMA PROPELLANT 
       (HIGH KINETIC TEMPERATURE) 

 
    MODEST THRUST           100 N – 1000 N 

      (REDUCED TRIP TIMES) 

 
         LONG LIFE          ELECTRODELESS 
       (MITIGATE PLASMA EROSION) 

 

CANDIDATE SYSTEM: COLLISIONAL THETA-PINCH 
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THETA-PINCH SYSTEM 

• EVALUATED DURING EARLY 
YEARS OF FUSION PROGRAM 

 
• PULSED AXIAL MAGNETIC FIELD 

COMPRESSES AND RADIALLY 
CONFINES IONIZED PLASMA 

 
• WITHOUT MIRRORS, PLASMA 

ESCAPES ALONG AXIAL FIELD 
LINES 

 

 

MODIFY THETA-PINCH GEOMETRY TO PROVIDE 
DIRECTED, HIGH ENERGY PLASMA EXHAUST 

PLASMAS AND CONTROLLED FUSION, 
ROSE AND CLARK, 1961 



  
 

HORIZON TECHNOLOGIES 

DEVELOPMENT GROUP 

BASIC CONCEPT 

• USE MAGNETIC MIRROR TO BLOCK UPSTREAM END OF 
THETA PINCH (MIRROR RATIO > 5)  

 
• PULSE INJECT NEUTRAL PROPELLANT GAS 

 
• PREIONIZE OUTER SURFACE AREA OF GAS FILL 

(PREIONIZATION PULSE IN DISCHARGE COIL) 
 

• ADIABATICALLY COMPRESS AND HEAT PREIONIZED 
PROPELLANT TO REQUIRED DENSITY, TEMPERATURE 

 
• ALLOW DOWNSTREAM EXHAUST TO PRODUCE THRUST 

 
• FIX REPETITION-RATE TO PRODUCE DESIRED THRUST 
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APPROACH 

PHASE I: 
 
• SIMPLE THEORY TO DETERMINE VIABILITY 

 
• ANALYTIC MODEL TO ESTIMATE POTENTIAL 

THRUSTER PERFORMANCE 
 
 
PHASE II: 
 

• 2-D CODE DEVELOPMENT FOR DETAILED 
PHYSICAL MODELING 

 
• EXPERIMENTAL EVALUATION 
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SIMPLE THEORY 

• IDEAL EXHAUST VELOCITY RELATED TO TEMPERATURE: 
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Ue = exhaust velocity    ηi = ideal cycle efficiency 
 T  = propellant temperature   γ  = adiabatic index 
 M = propellant molecular weight   g = 9.8 m/s2  

  R  = gas constant      Isp = specific impulse (s) 
 

HIGH TEMPERATURES, LOW MOLECULAR WEIGHTS 
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SPECIFIC IMPULSE vs. PLASMA TEMPERATURE 

1 eV = 11605 K 
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SIMPLE THEORY 

• PLASMA HEATED BY ADIABATIC COMPRESSION: 
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where:  

 
T0 = initial plasma temperature r0 = initial plasma radius 

  Tf = final plasma temperature  rf = final plasma radius 
  
 
       
• NO IRREVERSIBLE SHOCK HEATING OF THE PLASMA 
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PLASMA COMPRESSION RATIO vs. SPECIFIC IMPULSE 

Hydrogen 
Propellant, 
T0 = 0.1-eV 
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SIMPLE THEORY 

• IDEAL GAS EQUATION OF STATE: 
       

P RT nkT= = ∑ρ  
 
 where ρ = mass density, n = number density, k = Boltzmann’s constant 
 
 

• ADIABATIC COMPRESSION LAW: 
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provides compressed plasma pressure in terms of compression ratio 
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SIMPLE THEORY 

• PLASMA PRESSURE BALANCED BY MAGNETIC FIELD: 
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• NEGLECT RADIAL DIFFUSION ACROSS MAGNETIC FIELD 

 
• MIRROR RATIO RM ≥ 5 AT UPSTREAM END OF CHAMBER 
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• PLASMA FREELY ESCAPES FROM OPEN END OF CHAMBER 
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SIMPLE THEORY 

• TIME FOR PLASMA TO ESCAPE FROM CHAMBER LENGTH L: 

τ P
e

L

U
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• MASS OF PLASMA LOST FROM SYSTEM IN TIME τP: 

∆m r L= ρ π0 0
2( )  

 
 
• IMPULSE-BIT PROVIDED BY PULSED PLASMA EXHAUST: 

 
I N s m UBIT E( )− = ×∆  

 
 

• AVERAGE THRUST = IBIT × f (Hz)  ≤  IBIT/τP 
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MAGNETIC FIELD STRENGTH vs. INITIAL NUMBER DENSITY 
 

HYDROGEN PROPELLANT, Isp = 5000 s 
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THRUST (100% DUTY CYCLE) vs. INITIAL NUMBER DENSITY 
 

HYDROGEN PROPELLANT, Isp = 5000 s 
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MAGNETIC FIELD STRENGTH vs. INITIAL NUMBER DENSITY 
 

HYDROGEN PROPELLANT, Isp = 10,000 s 
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THRUST (100% DUTY CYCLE) vs. INITIAL NUMBER DENSITY 
 

HYDROGEN PROPELLANT, Isp = 10,000 s 
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RESULTS FROM SIMPLE THEORY 

• USEFUL THRUST OVER RANGE OF Isp 
 

• REASONABLE MAGNETIC FIELD STRENGTHS 
 

• REASONABLE PLASMA NUMBER DENSITIES, TEMPERATURES 
 

• ELECTRODELESS DEVICE MITIGATES EROSION FOR LONG LIFE 

THETA-PINCH PLASMA THRUSTER APPEARS VIABLE 
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ANALYTIC THETA-PINCH MODEL 

• TIME DEPENDENT NUMERICAL SIMULATION 
- Stover, Computer Simulation of Plasma Behavior in Open-Ended 

Theta Linear Machines, Dept. of Energy DOE/ET/53018-6, 1981. 
 
• INCORPORATES ADDITIONAL PLASMA PHYSICS 

- Time Dependent Plasma End Loss 
- Bremsstrahlung Radiation Losses 

 
• COMPARE WITH EXPERIMENTAL THETA-PINCH DATA 

- Scylla I-C Collisional Theta-Pinch 
 

• EVALUATE THETA-PINCH THRUSTER PERFORMANCE 
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THETA-PINCH MODEL 

DURING COMPRESSION: 
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RADIAL PRESSURE BALANCE: P t
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ADIABATIC COMPRESSION: 

INITIAL PARTICLE NUMBER:  

PLASMA NUMBER DENSITY: 

PLASMA TEMPERATURE: 
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THETA-PINCH MODEL 

AFTER COMPRESSION: 
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PARTICLE CONFINEMENT TIME: 

CHANGE IN PARTICLE NUMBER:  

PLASMA NUMBER DENSITY: 

PLASMA TEMPERATURE: 

ε = (5/2)T, E = internal ion energy, τth = thermal conduction time, A = plasma column area, χ ≈ 2.5 
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THETA-PINCH MODEL 
 

COMPARISON WITH SCYLLA I-C EXPERIMENT* 

CHAMBER RADIUS:   0.018 m 
 
CHAMBER LENGTH:   1.0 m 
 
INITIAL PRESSURE:   100 mTorr 
 
INITIAL TEMPERATURE:  1-eV 
 
EST. CONFINEMENT TIME: 14-µs 

*McKenna, K. F. and York, T. M., “Plasma End Loss Studies in Scylla I-C”, Phys. Fluids, 20, 
pp 1556-1570, 1979. 
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APPLIED MAGNETIC FIELD 
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NUMBER DENSITY PREDICTIONS 
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ION TEMPERATURE PREDICTIONS 
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USING SCYLLA I-C AS A THRUSTER… 

NUMBER DENSITY 

TEMPERATURE 
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… IS NOT A GOOD IDEA 

EXHAUST VELOCITY 

INTEGRATED IMPULSE-BIT 

• EXHAUST VELOCITY IS HIGH, BUT 
TOTAL PROPELLANT MASS IS TOO 
LOW TO PROVIDE USEFUL THRUST 
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IMPROVE THRUSTER PERFORMANCE 

 
• CHAMBER RADIUS:     1 m 
 
• CHAMBER LENGTH:   10 m 

 
• INITIAL PRESSURE:   1 Torr 

 
• INITIAL TEMPERATURE:  1-eV 

 
• USE SAME DRIVING FIELD AS SCYLLA I-C 
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TEMPERATURE 
vs. 

TIME 

NUMBER 
DENBSITY 

vs. 
TIME 
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• LARGER CHAMBER, HIGHER INITIAL PRESSURE INCREASES IMPULSE 
• CAN TAILOR AXIAL MAGNETIC FIELD TO IMPROVE COMPRESSION 

 

EXHAUST VELOCITY 

IMPULSE-BIT 
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PROGRAM STATUS 

• ANALYTIC MODEL PREDICTS THAT USEFUL THRUST, Isp CAN BE 
OBTAINED FROM A THETA-PINCH THRUSTER  

 
• DETAILED THRUSTER PHYSICS REQUIRES 2-D MODEL 

DEVELOPMENT (UNDERWAY) 
 

POTENTIAL ISSUES 

• MHD INSTABILITIES MIGHT ARISE THAT LIMIT COMPRESSION 
TIMES IN LONG THRUSTER CHAMBERS 

 
• NEED TO ESTABLISH OPTIMUM DRIVING FIELD CONFIGURATION 

FOR EFFICIENT THRUSTER OPERATION 
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PROGRAM PLANS 

• DEVELOPMENT OF ROBUST 2-D NUMERICAL MODEL TO 
BETTER SIMULATE THETA-PINCH THRUSTER PHYSICS 

 
• USE CODE TO IDENTIFY OPTIMUM THRUSTER GEOMETRY 

FOR DEEP SPACE MISSION APPLICATIONS 
 

• USE DYNAMIC SIMILARITY TO DEFINE SMALL-SCALE 
THETA-PINCH THRUSTER EXPERIMENT 

 
• EXPERIMENTALLY EVALUATE SCALED THETA-PINCH 

THRUSTER PERFORMANCE 
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