Ultra-Light Solar Sail for Interstellar Travel Phase I

Presented to: NIAC November 9, 1999

Dean Spieth

Pioneer Astronautics, Inc.
Dr. Robert Zubrin, President, (303) 980-0890
445 Union Blvd. #125
Lakewood, Colorado 80228

Scope of Phase I Work

Objective

 Analyze Capabilities of an Ultralight Solar Sail Using a Nanogrid of Reflector Material without a Plastic Backing (Similar to a Nanoscale Antenna Mesh).

(Not drawn to scale)

Approach

- Develop Equations for the Reflectivity of a Nanogrid of Wires.
- Analyze Engineering Constraints of Dimensions and Strength.
- Address Operational Issues of Deployment and Control.
- Determine Manufacturing Technologies Required for Fabrication.
- Develop a Phase II Plan to Demonstrate Key Fabrication Technologies and Verify Basic Concepts.
- Present Briefing and Final Report.

Physics Issues

- Develop Equations for the Solar Reflectivity Off a Nanogrid.
 - Rigorous Treatment
 - Compare to Lower Frequency Treatments by Marcuvitz (1951) and Forward (1985), Extrapolated to Visible
- First, Obtain a Baseline for the Solar Reflectivity Off a Solid Sheet without a Plastic Backing.

Nanoscale Aluminum Sheets Achieve a_c~0.3 m/s²

 Although Reflectivity Reaches a Maximum Above 30 nm Thickness, an Optimum Thrust-to-Mass Ratio (i.e., Acceleration) of ~0.3 m/s² Occurs at Only a Few Nanometers Thickness at 1 AU.

Multi-wire Analysis Results in $a_c > 0.54 \text{ m/s}^2$

- Solution of Maxwell's Equations for Reflection Off a Grid of Wires with Finite Electrical Conductivity (see Progress Report #3, October 1999).
- Best Acceleration: Radius = 5 nm, Interwire spacing = 50 nm
 - Not yet optimum, due to convergence issues at other values

(Analysis by Dr. Cindy R. Christensen)

Multi-wire RF Analogy Results in a_c ~5 m/s²

- Extension of Marcuvitz's (1951) Equations from Microwave to Visible Frequencies, with Uncoupled Thickness Factor, see p 3.
- Close Agreement with Forward's (1985) Equations for s/r<20.
- Yet >10X Higher Than Christensen's Analysis.
- Resolve Discrepancies via Fab and Test in Phase II.

Carbon Nanotubes as "Hollow" Wires

- Start Out Analysis with "Hollow" Wires.
 - For graphite, best thrust to mass is 0.18 m/s².
 - » DC conductivity of nanotubes is only half that of bulk aluminum
- Then Dope the Graphite Nanotubes.
 - With doping, conductivity is greatly enhanced, Dekker (1999).
 - Best Answers: Radius = 1.38 nm, Spacing = 100 nm

Thrust to mass: 18 m/s²

 Conductively Coated or Doped Carbon Nanostructures Show Great Promise in the Far Term, for Its Low Mass and High Temperature Characteristics.

(Analysis by Dr. Cindy R. Christensen)

Engineering Considerations

- Aluminum Foil Rips Rather Easily, and is 10,000X Thicker Than 1 to 10 nm Thick Ultrathin Solar Sails Analyzed.
- Can We Apply This Sheet or Mesh on a Plastic to Avoid Ripping for Handling, Storage, Launch, and Deployment, Then Allow the Plastic to Disintegrate or Outgas Once in Space?
 - Aluminized Mylar is Space Qualified, although with 100 nm Coating
 - Low E Coatings for Windows Involve nm Thick Coatings
 - Is There a Simpler Solution Than Using a Diamond-Like Coating Buffer Layer?
- Once Deployed in Interplanetary Space:
 - Metals are Very Stable to Radiation, Unlike Plastics
 - As Approach Sun, Perhaps Eventually to 0.2 AU
 - » Plastic Support Membrane Disappears Must Cover Critical Payload Surfaces (Optics & Thermal Control) from Contamination
 - » Avoid Outgassing/ Melting of Aluminum with Solar Approach
 - » Watch Reduction in Tensile Strength with Temperature

Ultrathin Aluminum Sails Can Survive Solar Approach

- Ultrathin Sheet of Aluminum Can Survive Solar Equilibrium Temperature at 0.2 AU.
- Desirable α/ϵ Ratio for Thermal Control at a Few Nanometers Thickness. (Similar trends as for chromium, which is recommended on backside of conventional solar sail, i.e., emittance increases as approach nanometers thickness.)

Ultrathin Aluminum Can Survive Solar Radiation Pressure

- Sail Radius of Curvature r_c Must Be < 1 km for Sheet @ 0.2 AU.
- Aluminum Grid Can Also Likely Survive Stresses.

Operational Issues

- Deployment and Control in Space
 - Deployment Comparable to Conventional Sail, as Strong Plastic Substrate is Intact During Deployment
 - Control Possibly Using Conventional Sail Technology

Comet Halley Concept (NASA/JPL)

Manufacturing Issues

- Manufacture in Space
 - Conceivable But Far Into the Future
 - Sail Size Can Be Much Larger than Manufactured Size on Earth
 - » Analogy to Spider Web in-situ Fabrication
- Manufacture on Earth
 - Substrate
 - » Low Temperature, Thin Plastic
 - Reinforcement
 - » Kapton Tape
 - » Embed High Temperature Netting with High Tensile Strength
 - Coating
 - » Several Nanometers of Aluminum
 - » Examples: Aluminized Mylar or Kapton, or Window Film
 - Patterning
 - » e-Beam Lithography is Now Approaching Needed Scale
 - » Laser Drilling Scale May Be Too Large

Note: Nanotubes are also Under Development

Mission Analysis

- Near-Term (within 10 years)
 - nm Thin Aluminized Plastics, With Sail Plastic Disintegration,
 Reinforced with Kapton Tape and High Strength Cord
 - Within 0.2 AU of Sun with Accelerations ~10 m/s² (a_c~0.3 m/s²)
 - Several Hundred Times Better Than Conventional Solar Sails with Only 2 micron Thick Kapton
- Mid-Term (within 20 years)
 - Large Scale Nanopatterning of Mesh-like Grid on Plastic
 - Characteristic Accelerations a_c~ 1 m/s², Analysis Ongoing
- Far-Term (beyond 20 years)
 - Large Scale Grid of Doped Carbon Nanotubes
 - Manufacture in Space Above 1000 km (to avoid drag & atomic O)
 - Solar Approach within 4 R_s (0.019 AU) and a_c > 10 m/s²

Mission Times to Interstellar Space

- In Near-Term, Could Reach Pluto in ~100 days.
- In Mid-Term, Can Reach JPL Goal of 35 yrs for 10,000 AU Probe
 - Table Below Shows 27 yrs for 1 m/s² from 0.1 AU to 10,000 AU
 - Assumes Improvements in Mesh Technology (Phase II)
- Far-Term Technology, Possibly Using Carbon Nanotubes, May Reach 10,000 AU in 4 Years! Or α Centauri in a Century!

Acceleration	Closest		40 AU	
@ 1 AU with	Solar	Terminal	Pluto	10,000AU
Payload,	Approach,	Velocity,	Mission,	Mission,
m/s^2	AU	km/s	days	yrs
0.3	0.2	671	102	71
1.0	0.1	1,733	40	27
10	0.019	12,572	6	4
	(4 Rs)	(4.2%c)		

Phase II Proposed Tasks

- Task 1 Nanometer Class Solar Sail Sheet
 - Vacuum Deposit 2, ..., 10 nm Thick Films on Plastic Substrate.
 - Attempt Plastic Decomposition in Thermal-Vacuum Chamber.
 - Measure Optical & Mechanical Properties After Test, to Verify Over 100X More Acceleration Than Conventional Sail Technology.
- Task 2 Nanometer Grid Reflector Solar Sail
 - Update Nanogrid Analysis for Various Geometries and Materials.
 - Pattern Grid Using e-beam Lithography or UV Lasers.
 - Measure Solar Absorptance, BRDF, Emittance versus Grid Geometry.
- Task 3 Fastener and Rip Stops Integrate with Sail so It Does Not Decompose.
- Task 4 Carbon Nanostructures Solar Sail Analysis.
- Task 5 Final Report & Update Interstellar Mission Implications.

Summary

- Ultralight Aluminum Solar Sails, without a Plastic Backing, Have Orders of Magnitude Improvement Over Conventional Solar Sails with a Plastic Backing.
- High Characteristic Accelerations @ 1 AU
 - Thin Aluminum Membranes ~0.3 m/s² vs 0.001 m/s² Conventional
 - Aluminum Nanowires ~0.6 m/s², Possibly Much Higher
 - Doped Carbon Nanotubes >10 m/s²
- Fantastic Velocities to Interstellar Space
 - Aluminum Membranes to ~1000 km/s 10,000 AU within a Lifetime
 - Carbon Nanostructures Possibly to ~4%c, α Cen in a Century
- Strong Experimental Program Recommended
 - e-Beam Lithography of Nanoscale Reflectors
 - Optical Measurements of Fabricated Reflectors
 - Thermal-Vacuum Tests with Enhanced UV & Heat to Ascertain Clean Removal of Various Plastics

Key References

- N. Marcuvitz (1951), Waveguide Handbook, MIT Rad. Lab. Ser., McGraw-Hill, New York, p 286.
- W.M. Rowe, et. Al. (1978), "Thermal Radiative Properties of Solar Sail Film Materials," AIAA Paper 78-852.
- Robert Forward (1984), "Roundtrip Interstellar Travel Using Laser-Pushed Lightsails," J. Spacecraft and Rockets, Vol. 21, No. 2, pp 187-195.
- Robert Forward (1985), "Starwisp: An Ultra-Light Interstellar Probe," J. Spacecraft and Rockets, Vol. 22, No. 3, pp 345-350.
- Robert Forward (1990), "Light-Levitated Geostationary Cylindrical Orbits: Correction and Expansion," J. Astronautical Sci., Vol. 38, No. 3, pp 335-353.
- C.R. McInnes (1999), Solar Sailing, Praxis Publishing, UK.
- Cees Dekker (1999), "Carbon Nanotubes as Molecular Quantum Wires," Physics Today, May 1999.

 <u>Pioneer Astronautics</u>