

### GLOBAL CONSTELLATION OF STRATOSPHERIC SCIENTIFIC PLATFORMS

#### Presentation to the NASA Institute of Advanced Concepts (NIAC)

by Kerry T. Nock Global Aerospace Corporation

November 9, 1999





### TOPICS

- CONCEPT OVERVIEW
- EARTH SCIENCE OVERVIEW
- CONSTELLATION MANAGEMENT
- TRAJECTORY CONTROL
- BALLOON
- GONDOLA
- INTERNATIONAL CONSIDERATIONS
- PHASE 2 PLAN
- SUMMARY

### **CONCEPT OVERVIEW**

### Global Stratospheric Constellation BENEFITS OF STRATOSPHERIC CONSTELLATIONS TO NASA

- Provide low-cost, continuous, simultaneous, global Earth observations options
- Provides in situ and remote sensing from very low Earth "orbit"



### **CONCEPT DESCRIPTION**

- Tens to Hundreds of Small, Long-life Stratospheric Balloons or StratoSats
- Uniform Global Constellation Maintained by Trajectory Control Systems (TCS)
- Flight Altitudes of 30-35 km Achievable With Advanced, Lightweight, Superpressure Balloon Technology
- Gondola and TCS Mass of 235 kg at 35 km Altitude
- Goal of ~50% Science Instrument Payload of Gondola



# Global Stratospheric Constellation CONCEPT SCHEMATIC

#### **Global Constellation**

#### StratoSat Flight System



Global Aerospace Corporation

- High Cost of Space Operations (Spacecraft and Launchers) Relative to Balloon Platforms
- Advanced Balloons Are Capable and Desirable High Altitude Science Platforms
- In Situ Measurement Costs Are Reducing With the Advance of Technology (Electronics Miniaturization, Sensor Advances)
- There is an Emerging and Widely Accessible Global Communications Infrastructure
- Balloons Fly *Close* to the Earth and Are *Slow*, Both Positive Characteristics for Making Remote Sensing Measurements
- A Constellation of Balloon Platforms May Be More Cost Effective Than Satellites for Some Measurements

**Global Aerospace Corporation** 



### **KEYS TO THE CONCEPT**

#### Affordable, Long-duration Stratospheric Balloon and Payload Systems

#### Lightweight, Low Power Balloon Trajectory Control Technology

**Global Communications Infrastructure** 

### EARTH SCIENCE OVERVIEW

### **ESE STRATEGIC PLAN GOALS**

Expand scientific knowledge of the Earth system . . . from the vantage points of space, aircraft, and in situ platforms

Earth Science Strategic Enterprise Plan 1998=2002

- Understand the causes and consequences of land-cover/land-use change
- Predict seasonal-to-interannual climate variations
- Identify natural hazards, processes, and mitigation strategies
- Detect long-term climate change, causes, and impacts
- Understand the causes of variation in atmospheric ozone concentration and distribution



### Global Stratospheric Constellation PROMISING EARTH SCIENCE THEMES

- Climate Change Studies
  - Water Vapor and Global Circulation in the Tropics\*
  - Radiative Studies in the Tropics:
  - Global Radiation Balance\*
- Ozone Studies
  - Mid-latitude Ozone Loss
  - Arctic Ozone Loss\*
  - Global Distribution of Ozone\*
- Weather Forecasting
  - Hurricane Forecasting and Tracking
  - Forecasting Weather from Ocean Basins & Remote Areas
- Global Circulation and Age of Air
- Global Ocean Productivity
- Hazard Detection and Monitoring
- Communications for Low Cost, Remote Surface Science

\* Discussed further in later charts

### CLIMATE CHANGE: GLOBAL RADIATION BALANCE



### CLIMATE CHANGE: DYNAMICAL PROCESSES IN TROPICS



### OZONE STUDIES: GLOBAL DISTRIBUTION OF OZONE



### **OZONE STUDIES: POLAR OZONE LOSS**







### **CONSTELLATION MANAGEMENT**

### **GLOBAL CONSTELLATION WITHOUT TRAJECTORY CONTROL**

#### ASSUMPTIONS

- 100 StratoSats @ 35 km
- Simulation Start: 1992-11-10
- UK Met Office Assimilation
- 4 hrs per frame

1000

800

600

400

200

0

20

40

60

σ<sub>NNSD</sub> [km]

4 month duration





### CONSTELLATION GEOMETRY MAINTENANCE

- Balloons Drift in the Typical and Pervasive Zonal Stratospheric Flow Pattern
- Trajectory Control System Applies a Small, Continuous Force to Nudge the Balloon in Desired Direction
- Balloons Are in Constant Communications With a Central Operations Facility
- Stratospheric Wind Assimilations and Forecasts Are Combined With Balloon Models to Predict Balloon Trajectories
- Balloon TCS Are Periodically Commanded to Adjust Trajectory Control Steering to Maintain Overall Constellation Geometry

### ILLUSTRATION OF CONTROL EFFECTIVENESS



#### 5 m/s Toward Equator

**5 m/s Toward Poles** 



#### Global Stratospheric Constellation MAINTENANCE STRATEGIES

#### Environment Information Used

- Successive Correction Data (Interpolated Measurements)
- Assimilations (Atmospheric Model Tuned by Actual Measurements)
- Forecasts (Can Be Used for "Look-ahead" Decision-making)

#### • Level of TCS Model Fidelity

- 1. Omni-directional Delta-v of Fixed Amount Applied at StratoSat
- 2. Delta-v Proportional to True Relative Wind at TCS
- 3. Actual TCS Aerodynamic Model and Sophisticated TCS Control Algorithms

#### Network Control Algorithms

- Randomization: Move StratoSats North or South Randomly
- "Molecular" Control: Each Balloon Responds Only To Its Neighbor
- Macro Control: Entire Network Is Managed, Balloons Are Moved Between Zones

#### Cyclone Scale Coordinates for Control Algorithms

**Global Aerospace Corporation** 

### GLOBAL CONSTELLATION WITH SIMPLE, INTELLIGENT CONTROL

#### **ASSUMPTIONS**

- 100 StratoSats @ 35 km
- Simulation Start: 1992-11-10
- UK Met Office Assimilation
- 4 hrs per frame
- 4 month duration
- 5 m/s control when separation is < 2000 km</li>
- Same initial conditions





### **TRAJECTORY CONTROL**



### FEATURES OF STRATOSAIL<sup>™</sup> TCS

- Passively Exploits Natural Wind Conditions
- Operates Day and Night
- Offers a Wide Range of Control Directions Regardless of Wind Conditions
- Can Be Made of Lightweight Materials, Mass <100 kg
- Does Not Require Consumables
- Requires Very Little Electrical Power
- Relative Wind at Gondola Sweeps Away Contaminants



### Global Stratospheric Constellation ADVANCED TRAJECTORY CONTROL SYSTEM

#### **Advanced Design Features**

- Lift force can be greater than weight
- Will stay down in dense air
- Less roll response in gusts
- Employs high lift cambered airfoil
- Greater operational flexibility





Global Aerospace Corporation

### **BALLOON**



### **BALLOON DESIGN OPTIONS**

#### **Spherical Envelope**

- Spherical Structural Design
- High Envelope Stress
- High Strength, Lightweight Laminate Made of Gas Barrier Films
   and Imbedded High Strength Scrims
- Multi-gore, Load / Seam Tapes

#### **Pumpkin Envelope**

- Euler Elastica Design
- Medium Envelope Stress
- Lightweight, Medium Strength Films
- Lobbed Gores With Very High Strength PBO Load-bearing Tendons Along Seams



# Global Stratospheric Constellation BALLOON VEHICLE DESIGN

#### **Baseline Balloon Design**

- Euler Elastica Pumpkin Design
- 68,765 m<sup>3</sup>, 59/35 m Eq/Pole Dia.,
   Equivalent to 51 m dia. Sphere
- Advanced Composite Film, 15 μm thick, 15 g/m<sup>2</sup> Areal Density
- 140 gores each 1.34 m Max Width
- Polybenzoxazole (PBO) Load Tendons At Gore Seams
- Balloon Mass of 236 kg





### GONDOLA



### **STRATOSAT GONDOLA**

#### StratoSat Gondola

- Example Climate Change
   Science Payload
- 2x1x0.5 m warm electronic box (WEB) with louvers for daytime cooling
- Electronics attached to single vertical plate
- LIDAR telescopes externally attached to WEB
- TCS wing assembly (TWA) stowed below gondola at launch before winch-down
- Science pods on tether



#### Global Aerospace Corporation

### INTERNATIONAL OVERFLIGHT CONSIDERATIONS

#### Current Scientific Balloon Program

- Overflight Often Allowed Especially If No Imaging and If Scientists of Concerned Countries Are Involved
- Not All Countries Allow Overflight and This List Changes Depending on World Political Conditions

#### • Treaty on Open Skies - Signed By 25 Nations in 1992

- Establishes a Regime of Unarmed Military Observation Flights Over the Entire Territory of Its Signatory Nations
- First Step of Confidence Building Security Measures (CBSM)

#### Future Political Climate

- Global Networks Can Build on World Meteorological Cooperation
- World Pollution Is a Global Problem Which Will Demand Global Monitoring Capability
- First Steps Need to Be Important Global Science That Does Not Require Surface Imaging

33

### **PHASE II PLAN**



### Global Stratospheric Constellation PHASE II PLAN

#### Constellation Management

- Control of Distributed Systems in Chaotic Environments Research
- Develop Advanced Constellation Geometry Control Algorithms
- Integrate Balloon Model, Environment and Advanced TCS Models and Control Algorithms in Constellation Simulations and Analysis

#### Advanced Trajectory Control

- Develop Control Models and Design Concepts

#### Advanced Balloon Design

- Materials Research
- Structural and Thermal Design
- Envelope Design and Fabrication Technology

#### Science Applications Development

- Proof-of-Concept Flight Definition A Logical Next Step
- Broaden Search for New Earth Science Concepts

### **SUMMARY**



- The StratoSat Is a New Class of *in Situ* Platform Providing:
  - Low-cost, Continuous, Simultaneous, Global Observations Options
  - In Situ and Remote Sensing From Very Low Earth "Orbit"
- Global Stratospheric Constellations Will Expand Scientific Knowledge of the Earth System
- Broader Involvement of the Earth Science Community Is Encouraged and Sought in the Definition of Constellation Mission and Instrument Concepts
- A Proof-of Concept Science Mission Is One Essential First Step on the Path Toward Global Stratospheric Constellations

### **APPENDIX**

### Global Stratospheric Constellation Aerospace STEPS TO GLOBAL STRATO-SPHERIC CONSTELLATIONS

#### **Constellation Types / Locale**

- Regional
  - South Polar
  - Tropics
  - North Polar
- Southern Hemisphere
- Global
  - Sparse Networks for Wide representative Coverage
  - Dense Networks for Global Surface Accessibility

#### **Measurements Types**

- In Situ & Remote Sensing of Atmospheric Trace Gases
- Atmospheric Circulation
- Remote Sensing of Clouds
- Atmospheric State (T, P, U, Winds)
- Radiation Flux
- Low Resolution Visible & IR
   Surface and Ocean Monitoring
- High Resolution Surface Imaging and Monitoring

#### A First Step Is a Proof-of-concept Science Experiment Using Soon to Be Available ULDB Technology



### Global Stratospheric Constellation STRATOSAT FLIGHT SYSTEM DESCRIPTION

#### Flight System Design Features

- Sample Payload for Climate Change Studies in Tropics
- 68,800 m<sup>3</sup> Pumpkin balloon
- 5 kW capable integrated solar array
- Telecom capable of 6 Mb/s
- Advanced TCS
- Tethered science pods

#### **Mass Summary**

| <u>Subsystem</u>          | <u>Mass, kg</u> |
|---------------------------|-----------------|
| Balloon                   | 236             |
| Helium                    | 87              |
| Power                     | 19              |
| Telecomm                  | 5               |
| Mechanical                | 30              |
| Guidance & Cont           | rol 1           |
| <b>Robotic Controlle</b>  | er 1            |
| <b>Trajectory Control</b> | ol 81           |
| Science                   | 56              |
| Science Reserve           | <u>44</u>       |
| Total                     | 560             |



### **HOW THE TCS WORKS**



- force is transmitted by tether to balloon
- balloon drifts relative to local air mass
- balloon drag  $\approx$  wing lift
- Wing is in much denser air than balloon
  - 25km : 35km (5x); 20km : 35km (10x)
  - equivalent wing area increased relative to balloon





#### Global Stratospheric Constellation HOW THE TCS WORKS, CONTINUED



Global Aerospace Corporation



ANGLES EXAGGERATED & FORCES NOT TO SCALE



**ULDB TCS** FORCE DIAGRAM

**Global Aerospace Corporation**