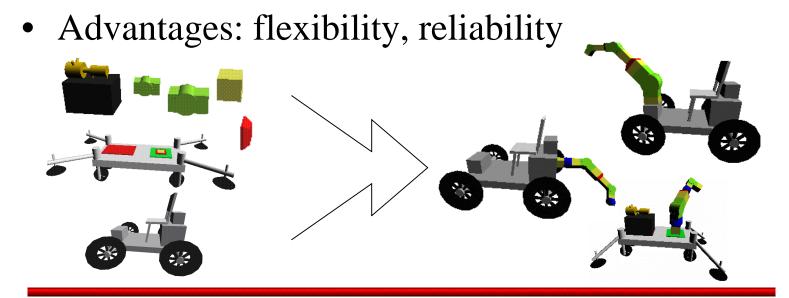


A Robotic Infrastructure for Space Exploration



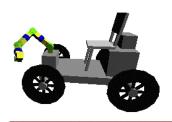
Shane Farritor, Assistant Professor University of Nebraska-Lincoln

A Robotic Infrastructure

- Robotic modules that can be assembled to create a variety of robots for various tasks
 - Joints, connecting links, end-effectors, power supplies, sensors, science instruments

Phase 1 Objectives

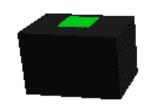
- Perform many tasks with limited resources
- Demonstrate:
 - Usefulness of the approach
 - Feasibility of the approach
- Using simulation and animation

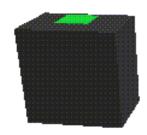

Mission Objectives

- Mission scenarios
 - "Robots will be used extensively to reduce astronaut EVA time"
- Mars
 - Human precursor mission
 - Human exploration
 - Robot colonies
- Lunar / small bodies (asteroids)

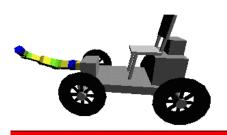
Tasks

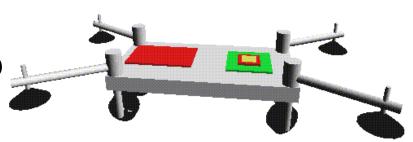
- Deploy nuclear power supply
- Deploy science instruments
- Autonomous exploration
- Support human exploration
- Regolith manipulation
- Tele-operated autonomous direct operation


Inventory Design

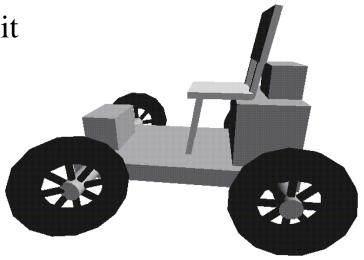

- Create robots that can accomplish the most tasks using the least modules
- Inventory includes:
 - Power modules
 - Base modules
 - Joints
 - Kinematic links
 - End-effectors
 - Sensors

Power Modules




- IC engine Small battery Large battery

- Methane/O₂
- Electrical generator
- High energy



Base Modules

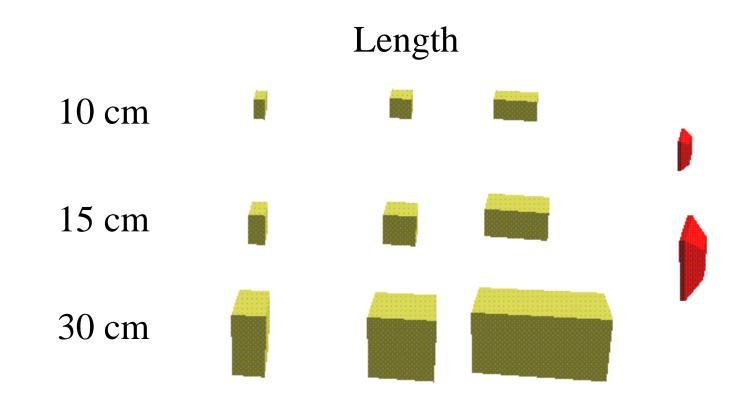
- Mobile platform
 - Standardized interface
 - 3 sizes (10,15,30cm)
 - Out-rigger support
 - Power supply interface

- Un-pressurized Mobility Unit
 - Front & Rear Interfaces
 - Transport 1 astronaut
 - Operate Autonomously/Teleoperated/Directly Driven

Joints

Axial joints Rotary joints 10 cm 15 cm 30 cm

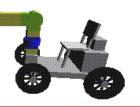
Module Specifications


15 cm (interface)

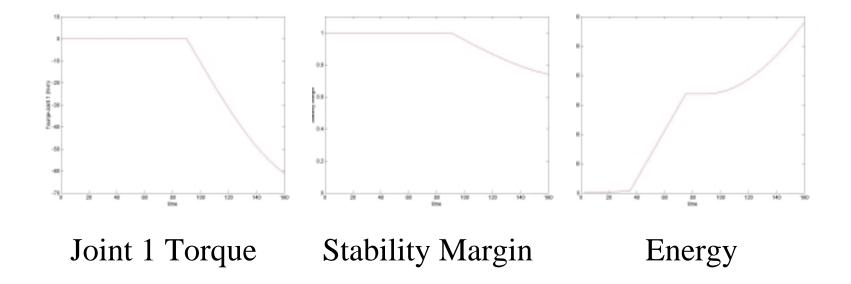
- Joint stall torque = 150 n-m
- Maximum velocity = 140 degrees/s
- Mass = 8 kg
- Joint limits = \pm 230 degrees

Links

End-effectors / Sensors


- Grippers
 - 10 cm
 - 15 cm
- Plow, blade, back hoe
- Science instruments

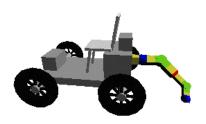
• Sensors for tele-, autonomous, driven operation



Simulation

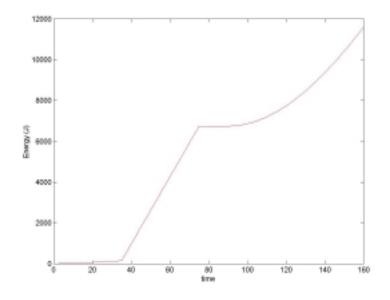
- Detailed physical simulation
- Adaptable to many assemblies
- Quasi-static approach
 - Power consumption, actuator saturation, stability, joint limits, workspace limits

Simulation


Animation

Completing Phase I

- Increase the diversity of the inventory
 - End-effectors
- Demonstrate tasks:
 - Deploy nuclear power supply
 - Various assemblies accomplishing various tasks
 - Create solar flare bunker (bury a habitat)
- Propagate results


Future Work

- Demonstrate the "robot colony" approach
- Demonstrate self-assembly
- Study interface issues

Energy Consumption

- Assume actuators are dominate power consumption elements
- Quasi-static analysis

$$\overline{\tau} = \overline{J}^{T} \overline{F}$$

$$\tau_{i} = k_{t} i_{motor}$$

$$P = V i_{motor}$$

$$E = P \Delta t$$