

Adaptive Observation Strategies for Advanced Weather Prediction

David P. Bacon, Zafer Boybeyi Center for Atmospheric Physics Science Applications International Corporation

Michael Kaplan Dept. of Marine, Earth, & Atmos. Sci. North Carolina State University

October 30, 2001

David P. Bacon (703)676-4594 david.p.bacon@saic.com

Center for Atmospheric Physics

Weather Forecasting – A Primer

- Weather forecasting relies on a system of systems:
 - In-situ observations (surface, balloon, & aircraft)
 - Remotely-sensed observations (satellite-based)
 - Data assimilation (creating a physically consistent 3-D dataset)
 - Prognostic models (extrapolation into 4-D)

In-situ Observations

- Irregular spatial distribution
 - Where the people (and planes) are
- Quasi-regular temporal distribution
 - Surface observations
 - » Hourly with special reports for significant weather
 - Balloon observations
 - » Twice-daily at 0000Z & 1200Z
 - Aircraft observations
 - » Regular intervals

Remote Sensing Observation Strategies

- The beginning:
 - TIROS-1 (April 1, 1960)
 - » Television and InfraRed Operational Satellite
 - ATS-1 (December 6, 1966)
 - » Applications Technology Satellite Geostationary
 - » Communications system test bed
- Raster based systems
 - Vidicon tubes to CCDs

Center for Atmospheric Physics

Data Assimilation

- Goal: A physically consistent 3-D representation of the atmosphere at an instant of time
- Requirements: Rationalize a disparate set of data that is a mix of irregular and grid point information at synoptic (0000Z & 1200Z) and asynoptic times
- Modify large-scale effects to reflect small-scale features
 - Capture steep gradients critical to severe weather

Prognostic Models

- Most models are based on a rectangular grid structure
 - Intuitively obvious
 - Simplest tiling
 - Simple operator decomposition
- Higher resolution is obtained by nesting
 - Conceptually easy
 - Numerically tricky
 - » Reflective internal boundaries
 - » Differing surface conditions
 - » Scale interactive information exchange
- Initial conditions obtained from data assimilation system
 - Generally at synoptic times

A Vicious Circle

- Increased horizontal (α) and vertical (β) resolution in models leads to:
 - Higher resolution initial conditions: $\alpha^2\beta$
 - Increased run-time: $\alpha^2\beta$
 - Increased output volume: $\alpha^2\beta \max(\alpha, \beta)$
- Higher resolution ICs requires higher resolution observations

Dynamic Adaptation of Data Assimilation and Model Resolution

• Initial grid for an OMEGA simulation of Hurricane Floyd and the grid (inset) at 72 hours

OMEGA Forecast of Hurricane Floyd

Center for Atmospheric Physics

Control Simulation

- Initialization:
 - 1200Z September 13
 - NOGAPS Analysis
- Boundary Conditions:
 - NOGAPS Forecast
- Grid Resolution:
 - **5 15 km**

Verification of Control Simulation

- Storm Tracks
 - White: Observations
 - Red: Control

Coarse Resolution Simulation

- Initialization:
 - 0000Z September 14
 - NOGAPS Analysis
- Boundary Conditions:
 - NOGAPS Forecast
- Grid Resolution:
 - 75 120 km

Verification of Coarse Resolution Simulation

- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
- Significant westward track deviation

Adaptive Observations

- Control Run provides a source of *pseudo*-observations for OSSEs
- Control cell centroid closest to the Coarse cell centroid used to provide *pseudo*-sounding

Case #1: 654 Targeted Observations

- Coarse Resolution Configuration
- Added 654 observations
 - All cell centroids in box around storm

Verification of Case #1 (654 Targeted Observations)

- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
 - Orange: Case #1 (654)
- Noticeable improvement in forecasted track

Case #2: 100 Targeted Observations

- Coarse Resolution
 Configuration
- Added 100 observations
 - Regular 10 x 10 array around storm
- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
 - Orange: Case #1 (654)
 - Green: Case #2 (100)
- Virtually identical track to Case #1 with only 20% of the targeted observations

Case #3: 11 Targeted Observations

- Coarse Resolution
 Configuration
- Added 11 observations
 - Around initial storm location
- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
 - Cyan: Case #3 (11)
- Very minor difference from Coarse resolution simulation

Case #4: 50 Targeted Observations

- Coarse Resolution
 Configuration
- Added 50 observations
 - Along forecasted track
- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
 - Pink: Case #4 (50)
- While this case improved the forecast early on, it did not improve the track at later times as much as Case #1 or Case #2

Case #5: 25 Targeted Observations

- Coarse Resolution
 Configuration
- Added 50 observations
 - Along forecasted track
- Storm Tracks
 - White: Observations
 - Red: Control
 - Yellow: Coarse Res
 - Cyan: Case #5 (25)
- Track nearly identical to Case #4.

Conclusions and Ramifications

- Targeted observations can have a dramatic impact on storm forecasts
 - Improvement in initial storm conditions has the largest payoff
 - Other scenarios may have different requirements
- Greatest improvement will come in identifying and obtaining key observations for *developing* convective storms
 - The critical scales are so small and hence the volume of regular arrays of observations is so large that either the communications become a dominant problem *or* the extraction of a "signal" from the "noise" of data bits prevents utilization
- The routine utilization of targeted as opposed to general satellite observations has significant impact on satellite operations
 - Timeliness is key \Rightarrow Communication & data mining issues
- A tightly linked forecast and observational system can address these issues as well

