

A Novel Information
Management
Architecture for
Maintaining LongDuration Space Crews

Principal Investigator:

George Cybenko, Dartmouth College, gvc@dartmouth.edu

Co-Investigators:

Jay Buckey, Jr., Dartmouth Medical School, jay.buckey.jr@dartmouth.edu Susan McGrath, Dartmouth College, susan.p.mcgrath@dartmouth.edu

Challenges of Long-Duration Space Flight

Physiological

- Bone loss
- Radiation exposure
- Psychosocial adaptation
- Medical care

Technical

- Adaptability
- Limits on crew time
- Onboard analysis and feedback
- Autonomy

Physical replenishment is difficult, but software replenishment is easy— and should be exploited

Agent Based Monitoring Approach Addresses These Challenges

Filtered data, code updates

- Distributed sensors collect data
- Mobile Agents collect and analyze distributed sensor data and other related information
- Mobile agents automatically send alerts and messages when necessary

Spacecraft

Mobile Agent Approach Promotes:

- efficient bandwidth use
- load balancing
- reduced user burden
- maximal flexibility
- onboard analysis

Air Force Office of Scientific Research Multi-University Research Initiative Project: Transportable Agents for Wireless Networks

The ActComm Project
Dartmouth (Prime), ALPHATECH, Harvard,
Lockheed Martin, RPI, University of Illinois
http://actcomm.dartmouth.edu

Volatile Network and Information Resources

Maps

Commands

Weather

AGENTS

Active Information: standing queries, data fusion, automatic organization

Field Reports

Information Requests

AGENTS

Active Planning:

Network routing and agent itineraries must be planned dynamically using stochastic control.

Active Hybrid Networks: Wireless and volatile networks must reconfigure and relocate servers/proxies

for robustness and efficiency

Mobile Users

Active Software:
Tcl, Java, Python
and Scheme mobile
agents deliver data and
monitor databases

Phase I Research Goals

- Develop distributed information retrieval and analysis architecture based on mobile agents
- Apply the architecture to the bone loss monitoring application
 - Analysis model parameters and their relationships to bone loss
 - Parameter data collection- sensors
 - Identify tradeoffs
- Make recommendations for future work

Test Case: Bone loss

Load bearing areas lose significant amounts of bone

Test Case: Bone loss

Calcium in the urine is comes from load-bearing bone

Test Case: Bone loss

The Calcium regulation system determines urinary Calcium levels

Urinary Calcium Loss Function

$$U_{\text{Ca}} = f(X_{\text{static}}, X_{\text{impulse}}, X_{\text{overall}}, X_{\text{Ca}}, X_{\text{Na}}, X_{\text{protein}}, X_{\text{D}}, X_{\text{acid-base}}, X_{\text{drug}}, X_{\text{noise}})$$

where

 $X_{\text{static}} = \text{static loading}$

 $X_{\text{impulse}} = \text{impulse activity}$

 $X_{overall}$ = overall activity

X_{Ca}= dietary calcium

 X_{Na} = dietary sodium

 $X_{protein} = dietary protein$

 X_D = dietary vitamin D

X_{acid-base} = acid-base balance

 $X_{drug} = drug effect$

 $X_{\text{noise}} = \text{noise}$

Challenges: How best to quantify the parameters?

How can they be measured?

What are the relationships?

		Parameters		Technology		Specific Device	UCa Rel.	Ref.
	Activity	1 A colonida					1111/5005	(D. 605.40)
Stat	tic / Other	1. Acceleration		Accelerometers		G meter	INVERSE	(Rref:36-40)
 						Micromachined Thermal Accelerometer Actigraphs		(REF 37)
_		2. Hydrostatic pressure		Pressure sensor		Various pressure sensors	INVERSE	
	Dynamic	1.Muscular Contraction		Soundmyogram		Acoustic myograph	INVERSE	
	Dynamic			(SMG)		Phonomyograh	INVERSE	
				(4112)		7.0		(433.00.00)
				Electromyography		Surface EMG	INVERSE	(REF 52-53)
				(EMG)		Myotrac Surface EMG		
<u> </u>					,			
<u> </u>						T 1	INVERSE	(REF 41-43)
<u> </u>			$ \mathbf{A}$			Impulse =		(222.0)
		2. Motion	`				INVERSE	
 						Wassella cancer is abot		(REF 54)
						Wearable sensor jacket Smart Fabric/Washable computing	+	(REF 37) (REF 38)
	Impulse	1.Reaction Forces		Pressure Sensors		LEMS Suit	INVERSE	
	Impuisc	1.reaction 1 orces		Tressure Bensors		Dynamic load sensors system	HAVEKSE	(REF 55)
						Instrumented insole		(Ref:57-58)
			1		1			
	Par	cameters	T	ochnology		Specific Device		UCa Re
	1 41	afficters	1	echnology		Specific Device		oca Ku
└								
	1.Reaction	n Eoroog Duran		uma Canaana	IT E	I EMC Cuit		
	1. Keachon	rorces	Press	ure Sensors		and Suit		INVER
<mark> </mark>					I	ynamic load sensors system		
					127			
P					Tage	stanta anto di ma alla		
					Ins	Instrumented insole		
Ca					l Pe	Pedar system		
					1 0			
L						F-scan system		
└					F-9			
<mark> </mark>								
					$ \mathbf{p}_{\mathbf{a}} $	Partotec-systems device		
Vita					1 4	1 ditotee by bleinb device		
VICE					Ground reaction force monitor			
					Ur	Ground reaction force monitor		
					Sn	nart treadmill		
 _					DII	nart a caamm		
						Various pH meters		
L	C't 1	2.Urinary Citrate				BECKMAN PSI 21 PH METER	+	
	ary Citrate	2.01maly Citrate			+		+	
	vironment	1.CO2 Levels		S		Tunable Diode Laser Absorption Spectroscopy	+	
C	CO2 levels	1.CO2 Levels		Spectroscopy		Infrared Detector	+	
						Mass spectrometer		
TIVE	igtht levels	2.UVLight Levels		Photometer		mass specialities	+	
UVII	iguit ieveis	2.0 v Light Levels		1 Hotomoto	I		+	
	Drugs				1			
	Drugo	Bisphosphonate levels					+	+

Bone Loss Monitoring Application

Mission

Control

- Analysis and learning agent integrate, analyzes data & alerts crewmembers when a problem exists
- System can adapt to variability in human response

Filtered data, code updates

Spacecraft

Bone loss analysis system

sensors

CO,

Mobile

Automated

Urinalysis

• Agents transmit bone loss estimates to Mission Control

• In response, algorithms and code can be updated throughout the mission

• Continuous monitoring emphasizes prevention and autonomy

Bone Loss Monitoring Agents

CO₂, Activity, Urinalysis Sensor Systems Agents

- •Collects data at predetermined or event initiated intervals
- •Performs raw data data analysis
- Moves data to storage and analysis hosts
- •Performs occasional self test, reports to Coordinator

Coordinator Agent

- •Receives input from Mission Control
- •Controls installation of updates/changes on distributed hosts
- •Sends data to Mission Control
- •Analyzes sensor and data performance
- Acts to remedy problems with subsystems

Bone loss Analysis system Mobile agents rious sensors timation" algorithm

Analysis Agent

- •Utilizes baseline measurements
- •Receives data from various sensors
- •Executes "bone loss estimation" algorithm
- Determines appropriate therapy
- •Notifies users of action required (if any)
- •Sends historic and performance data to Coordinator

Mobile Agent System Requirements

Control System Model

Bone Loss Therapy Model

System Functionality

- Baseline information processing
- Sensor data processing
- Individual assessment, recommended therapy
- Alerts, messages
- Learning, adapting

Design Considerations

- Knowledge representation
- Classification
- Learning

Bone Loss Control Surface

The relationship between duration of space flight, bone loss intervention and bone loss must be learned

Conclusions

- Initial assessments are that drug effect, impulse loading and acid-base balance may be the most important factors to follow
- Need to define fully urinary calcium relationships for key variables in order to program agents.
- Need to apply agents in simulated scenarios to test approach—focus on learning the control surface

Summary and Next Steps

Technology	Accomplishments	Next Steps	Long term	
Bone loss model	•Defined key parameters and general relationships to bone loss	• Perform experiments & analysis to define specific relationships of parameters to bone loss	Extend to other challenge areas	
Sensors and Networking	 Surveyed existing sensors capable of providing needed parameter data Identified wireless approach to integrate sensor data & agents 	 Select sensors for simulation of architecture Define bandwidth and data processing and storage requirements 	Evaluate miniaturization (MEMS) and ubiquitous wireless integration	
Agent Architecture	 Identified functionality required for various agents Defined specific approach for analysis agents 	 Implement simulation of agent architecture including analysis and sensors Consider future software implementations of agent based systems (e.g., XML) 	Leverage new standards, COTS	