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Concept Summary
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Insulation Value

Enabling Waste Heat
Rejection From Full Suit
Surface Area

Controlled Suit Heat Transfer

— Matches metabolic load and
environment

— Layer contact and distance
(conduction changes)

— Layer emissivity
Eliminate Expendables
Simpler, Lighter Life Support
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Mission Needs Addressed
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Performance - Feasibility Assessment

Maximum Radiated Heat Load Maximum Radiated Heat Load
From PLSS Area From Whole Suit Area

Sink Temp.
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— 150K
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Heat Rejection (Watts)

|
Minimum Resting Metabolic Rate

Outer Surface Temperature of Suit (K) Outer Surface Temperature of Suit (K)
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Performance - Mission
Environments & Interactions

Heat Rejection Vs Sun Angle to Surface Normal
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Heat Rejection Capability With and Without
Directional Shading
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~ Performance - System Elements
Reqm rements Derivation

Cold Environment (Mars Night)
Hﬂ + Min Metabolic Rate — 100 W
o QOuter Layer Emissivity - 0.85
'\\ « Conductivity — 0.96 W/m?-°C

i Aehaied Spacers e 6-layer Conductivity » 0.16 W/m?-°C

Radiation transport can be limited to acceptable loss
for resting conditionsin cold environment

Hot and Warm Environments
e  Max Metabolic Rate — 600 W
e Emissivity - 0.85
e Conductivity — 300 W/m?-°C
it DeAci va | e 6-layer Conductivity - 50 W/m?-°C

Thermal resistance can be minimized to increase
radiation transport for hot environment 6
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Concept Evolution, Refinement
and Growth Potential

e Conductive Velvet Interlayer

“iking 7 Emuagmron s
— Reduced temperature drop to
oy Surf & S Higher Angle IR -
S M EM S D| rectl Onal Shadl ng : » Partially Reflected
Louvers

— Radiative heat rgjection in
“Impossible” environments

» Supplemental Heat Transport
e Micro-Heat Pump Technology

Corner Reflectors -
Retroreflective Surface
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Chameleon Suit Layer Structure

EAP Layer Spacing Control Actuators

Thermally Conductive
Fiber Felt

| nsulating Polymer
|solation Layer

Negative Voltage Suppl
(conductive polymer?)

IR Transparent Conductive Control Electrode
(& temperature sensor)
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System Sensing & Control Basics

User e Loca Temperature &
Metbolic Centralized Metabolic Rate

o Loca TemperatureisKey

— Outside surface setsfeasibility
of heat regjection

— Inside surface controls
comfort

— Layer delta T gives heat flux

|

l . Metabolic Rate

| — Sets comfort temperature
— Setstotal heat flux

Local Temperature &

Layﬁpkcing Lctlve Protective
Control Garment
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System Sensing & Control

Effect of Sensing & Control Zone Angular Size
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System Control Needs

— Maintain Therma Comfort

— Avoid Hot & Cold Touch
Temperatures

Environmental Factors
— Hot & Cold Extremes
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— Rapid Variation L 5
- Directional SOUFCGS Zone Angular Width (Degrees)
e Sun, Hot Surfaces

Crew Motion
_
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Sensing & Control Integration
Options

e Driving Factors » ControE e
— Robust Control . To.tal He R
: : — Skin Comfort temperature
o Simple signal and power _
interfaces — Comfort Indicators
* Minimize harnesses » Architecture Options
e Redundancy — Centrdlized
— Minimize Heat Leak — Distributed
— Minimize Power/Weight/VVolume  Signal Transfer

— DataBus, Wireless
— Effector Drivers
— Power Distribution

11



% Hamilton Sundstrand

= Control And Feedback

e ~150 Zones, 5layers=> High |/O
Count

e Centralized Control Requires

Complex Data Transfer, High Data ;ones
Rates

e Optimal Approachesin Dealing With
High I/O Counts Are Based on a
Distributed Processing Concept

e Distributed Control Zones for
Segments of the Suit Simplify the 1/0
Requirements
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Control And Feedbeg
Preferred |mplement:

o Central Processor
— Determines metabolic rate
— Transmitsinner wall T targets
— Receives zone status & wall T .
» Networked dedicated zone controllers ~ controllers
— RecelveT targets & local T's
— Locally send actuator control signals
— Transmit inner wall T & status
e Signal transmission
— Wireless |EEE 802.11B protocol
— Alternate - signals on power lines
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Power Distribution

Current Technology Harnesses ¢«  Wireless Data Transmission,

— Weight, Reliability, Mobility Local Control Components
Impacts — Only Power Physically Connects
“Smart” Garment Technology Layers (Thermal Short)
— Integrated Power and Signal — Minimum Number of
Distribution Connections
» Conductorswoven in cloth Wireless
layers Corm /I/

» Conducting polymer layers Sensor
— Integrated Sensing, Data
Terminal, Actuator Control
Elements on Chip

Embedded

Control

Fabric Effector Control { 5c—7" .
and Input Power Layers \ =
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Technology Base Assessment -
Development Needs Key Areas

Variable Geometry Insulation
— Light weight, flexible biomimetic polymer actuators.
— Durable and effective felt thermal contact material.

Controlled Thermal Radiation

— Effective thermal IR electrochromic polymers with high
contrast ratios

— “Soft” MEMS directional louver implementations.
e “Smart” Garment Sensing and Control |ntegration
e Cost Effective Integrated Garment Manufacturing
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Variable Geometry Insulation

Actuators

e Elongating polymers (MIT)
— Conductive polymers (PPy, PAN)
— liquid, gel or solid electrolytes
— 2% linear , 6% volumetric at ~ 1V
e Bending polymers (UNM)
— |onic polymer-metal composites (Nafion-Pt)
— need to prevent water |eakage (encapsulation, better Pt
dispersion)
— complete loop with <3V
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Interlayer Thermal Contact

e Low Therma Resistance
|s Required
. ngh Metabolic Rates Carbon Feltggrr:]tsf;sc;?;:uctance Vs.
— Warm Environments
— Vacuum Conditions
— Low Contact Pressure

e Carbon Fiber Felts Show
Good Performance

e Durability in Application
Requires Devel opment
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Electro-emissive Technologies

« Most Broadband Infra-red
Research Has Been With
sy i Inorganic EC Materials
Ny L (WO,)
G e Contrast Ratios> 2:1 inthe
) Thermal IR Shown

 Polymer EC Materials are
Under Study by Numerous
Investigators

e Much Further Development
IS Needed
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Directional Shading Louvers

 MEMS Louver Technology is Under Devel opment
for Satellite Applications
— Shown to Provide Effective Emissivity Modulation

— Options Under Study Include Pivoting Louvers Required
for Chameleon Suit Directional Shading

e Louver Sizefor IR Corner Reflectors is Compatible
With Application (~.03 mm deep)

« Maor Development Challenges
— Integration in Flexible Garment
— Removable Louver Layers
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Sensing & Control Integration

The Wearable Motherboard

An Intelligent Garnent for the 2158 Cenbury )

o Systems Embodying the Required Functions Are Being
Developed for Many Uses

 Key Challenges Will Be:

— Space Environment Compatibility
— Limiting Weight & Maintaining Flexibility With Many Layers
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Mission Benefits A ssessment

e Substantial Launch Mass
Savings
— Savings For All Missions
— EVA Intensive 1000 Day
Class Missions Benefit Most
e ~3.5KgReductionin EVA
Carry Mass
o Capability for Non-Venting
Operations in Most
Environments Number of 2 Person EVA's / Mission

— Science & Servicing
Flexibility

Chameleon Suit Launch Mass Savings

NASA Mars
Design Reference Mission

Units
Launched
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o Studying the Chameleon Suit

e & P
Vg

Reveals Many New Challenges
— None Have Y et Proved Insoluble

Many Required Technology
Advances are Pursued
Elsewhere

— Specific Development and
Adaptation Work is Required

Potential Benefitsto NASA are
Substantial and Redl
— Further Study Should be Pursued
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