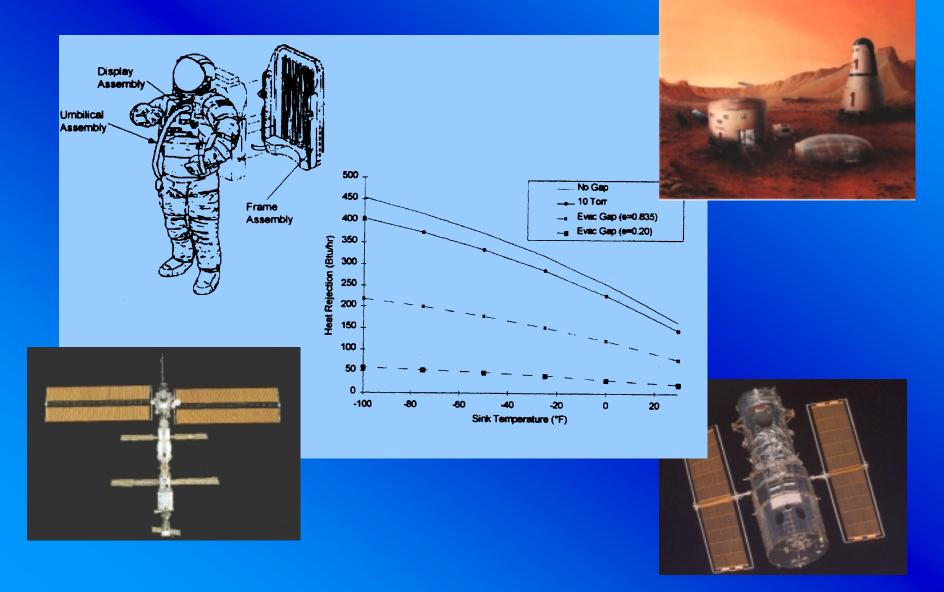
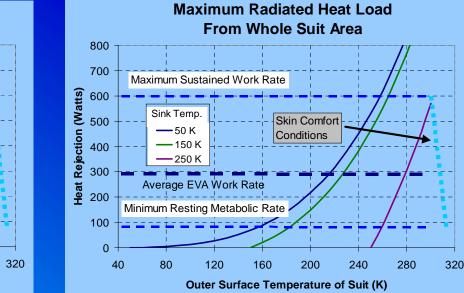
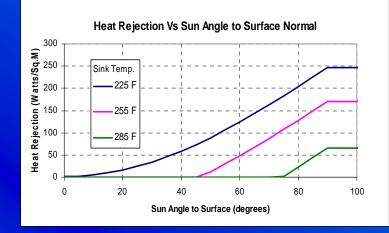

A Chameleon Suit to Liberate Human Exploration of Space Environments

Ed Hodgson HSSSI October 30, 2001

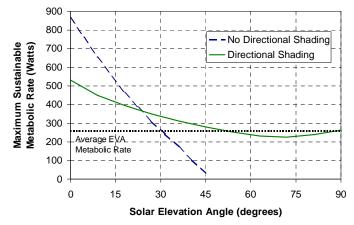

Concept Summary

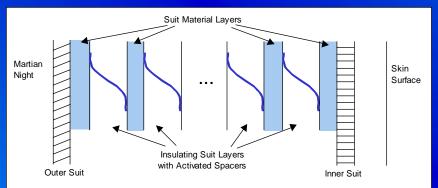
- Enabling Waste Heat Rejection From Full Suit Surface Area
- Controlled Suit Heat Transfer
 - Matches metabolic load and environment
 - Layer contact and distance (conduction changes)
 - Layer emissivity
- Eliminate Expendables
- Simpler, Lighter Life Support

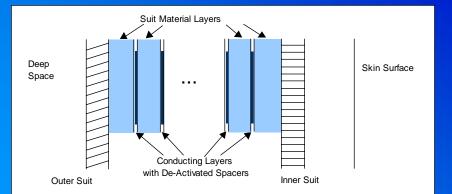

Mission Needs Addressed


Maximum Radiated Heat Load From PLSS Area 800 700 Maximum Sustained Work Rate Heat Rejection (Watts) 600 Sink Temp. 500 - 50 K Skin Comfort 400 - 150 K Conditions -250 K 300 Average EVA Work Rate 200 Minimum Resting Metabolic Rate 100 0 40 80 120 160 200 240 280 Outer Surface Temperature of Suit (K)




A United Technologies Company Performance - Mission Environments & Interactions




5

A United Technologies Company Performance - System Elements Requirements Derivation

Radiation transport can be limited to acceptable loss for resting conditions in cold environment

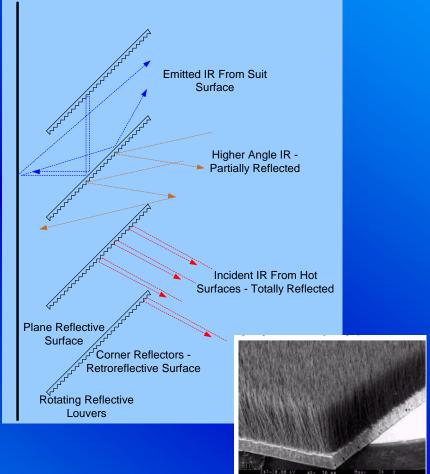
Thermal resistance can be minimized to increase radiation transport for hot environment

Cold Environment (Mars Night)

- Min Metabolic Rate $\rightarrow 100 \text{ W}$
- Outer Layer Emissivity $\rightarrow 0.85$
- Conductivity $\rightarrow 0.96 \text{ W/m}^2\text{-}^\circ\text{C}$
- 6-layer Conductivity $\rightarrow 0.16 \text{ W/m}^2\text{-}^\circ\text{C}$

Hot and Warm Environments

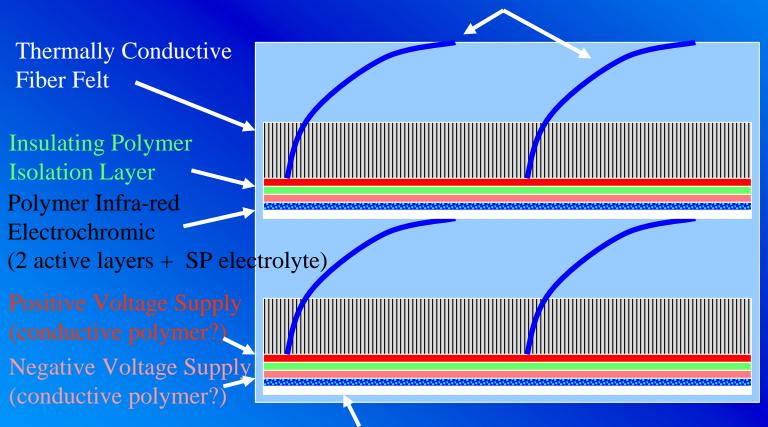
- Max Metabolic Rate $\rightarrow 600 \text{ W}$
- Emissivity $\rightarrow 0.85$
- Conductivity $\rightarrow 300 \text{ W/m}^2\text{-}^\circ\text{C}$
- 6-layer Conductivity $\rightarrow 50 \text{ W/m}^2\text{-}^\circ\text{C}$



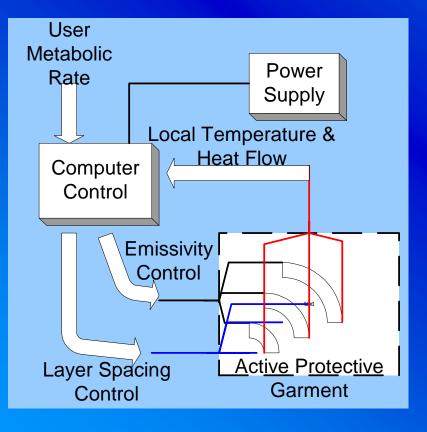
Hamilton Sundstrand

A United Technologies Company

Concept Evolution, Refinement and Growth Potential


- Conductive Velvet Interlayer Contact
 - Reduced temperature drop to outer surface
- MEMS Directional Shading Louvers
 - Radiative heat rejection in "impossible" environments
- Supplemental Heat Transport
- Micro-Heat Pump Technology

Chameleon Suit Layer Structure

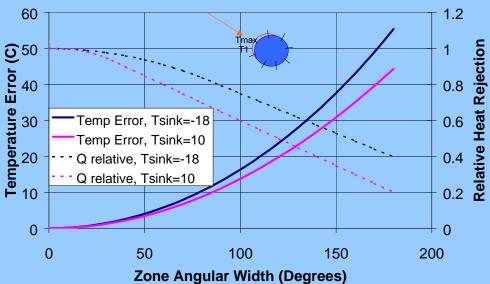

EAP Layer Spacing Control Actuators

IR Transparent Conductive Control Electrode (& temperature sensor)

System Sensing & Control Basics

- Local Temperature & Centralized Metabolic Rate
- Local Temperature is Key
 - Outside surface sets feasibility of heat rejection
 - Inside surface controls comfort
 - Layer delta T gives heat flux
- Metabolic Rate
 - Sets comfort temperature
 - Sets total heat flux

System Sensing & Control


• System Control Needs

Hamilton Sundstrand

A United Technologies Company

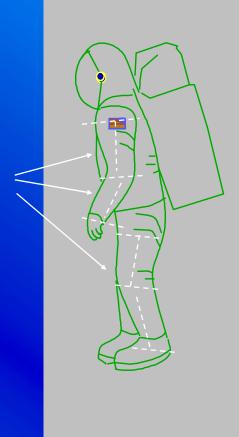
- Maintain Thermal Comfort
- Avoid Hot & Cold Touch Temperatures
- Environmental Factors
 - Hot & Cold Extremes
 - Rapid Variation
 - Directional Sources
 - Sun, Hot Surfaces
- Crew Motion
 - Contact Pressure
- Suit Control Zones

Effect of Sensing & Control Zone Angular Size

Control & Sensing Zones			Inactive Zones
Head	11		Gloves
Torso	32		Elbows
Upper Arm	24		Knees
Lower Arm	24		Boots
Upper Leg	24		
Lower Leg	24		
Shoulders	7		
Total	146		

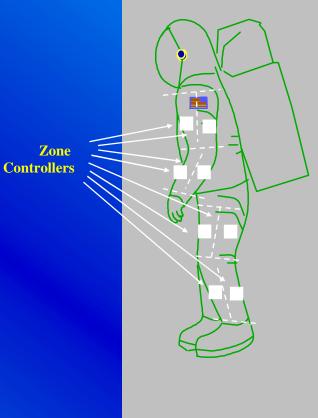
10

Sensing & Control Integration Options


- Driving Factors
 - Robust Control
 - Simple signal and power interfaces
 - Minimize harnesses
 - Redundancy
 - Minimize Heat Leak
 - Minimize Power/Weight/Volume of Control Electronics

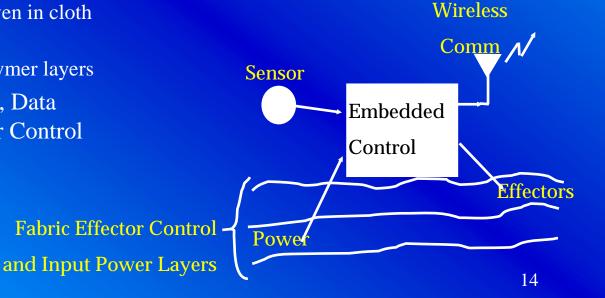
- Control Basis
 - Total Heat Rejection
 - Skin Comfort temperature
 - Comfort Indicators
- Architecture Options
 - Centralized
 - Distributed
 - Signal Transfer
 - Analog/Sensor inputs
 - Data Bus, Wireless
 - Effector Drivers
 - Power Distribution

Control And Feedback


- ~150 Zones, 5 layers => High I/O Count
- Centralized Control Requires Complex Data Transfer, High Data ZONES Rates
- Optimal Approaches in Dealing With High I/O Counts Are Based on a Distributed Processing Concept
- Distributed Control Zones for Segments of the Suit Simplify the I/O Requirements

Control And Feedback Preferred Implementation

- Central Processor
 - Determines metabolic rate
 - Transmits inner wall T targets
 - Receives zone status & wall T
- Networked dedicated zone controllers
 - Receive T targets & local T's
 - Locally send actuator control signals
 - Transmit inner wall T & status
- Signal transmission
 - Wireless IEEE 802.11B protocol
 - Alternate signals on power lines



Power Distribution

- Current Technology Harnesses
 - Weight, Reliability, Mobility Impacts
- "Smart" Garment Technology
 - Integrated Power and Signal Distribution
 - Conductors woven in cloth layers
 - Conducting polymer layers
 - Integrated Sensing, Data Terminal, Actuator Control Elements on Chip

- Wireless Data Transmission, Local Control Components
 - Only Power Physically Connects Layers (Thermal Short)
 - Minimum Number of Connections

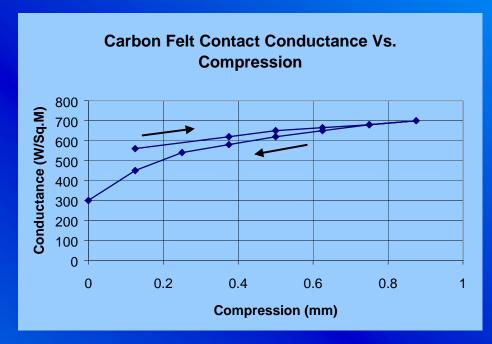
lamilton Sundstrand

Technology Base Assessment -Development Needs Key Areas

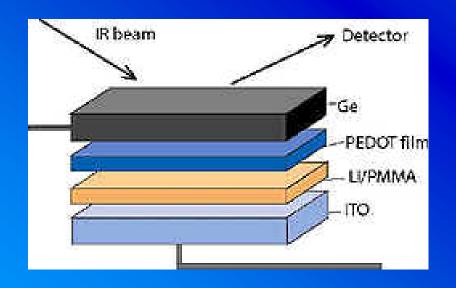
- Variable Geometry Insulation
 - Light weight, flexible biomimetic polymer actuators.
 - Durable and effective felt thermal contact material.
- Controlled Thermal Radiation
 - Effective thermal IR electrochromic polymers with high contrast ratios
 - "Soft" MEMS directional louver implementations.
- "Smart" Garment Sensing and Control Integration
- Cost Effective Integrated Garment Manufacturing

Variable Geometry Insulation Actuators

- Elongating polymers (MIT)
 - Conductive polymers (PPy, PAN)
 - liquid, gel or solid electrolytes
 - 2% linear , 6% volumetric at ~ 1V
- Bending polymers (UNM)



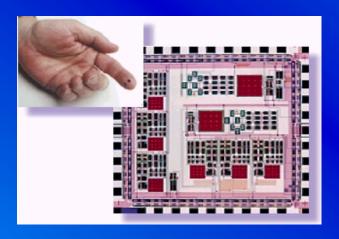
- Ionic polymer-metal composites (Nafion-Pt)
- need to prevent water leakage (encapsulation, better Pt dispersion)
- complete loop with <3V</p>

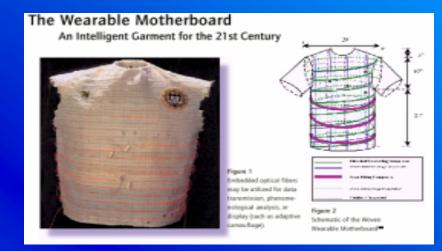

Interlayer Thermal Contact

- Low Thermal Resistance Is Required
 - High Metabolic Rates
 - Warm Environments
 - Vacuum Conditions
 - Low Contact Pressure
- Carbon Fiber Felts Show
 Good Performance
- Durability in Application Requires Development

Electro-emissive Technologies

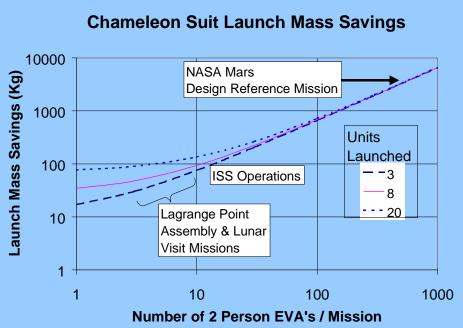
- Most Broadband Infra-red Research Has Been With Inorganic EC Materials (WO₃)
- Contrast Ratios > 2:1 in the Thermal IR Shown
- Polymer EC Materials are Under Study by Numerous Investigators
- Much Further Development is Needed




Directional Shading Louvers

- MEMS Louver Technology is Under Development for Satellite Applications
 - Shown to Provide Effective Emissivity Modulation
 - Options Under Study Include Pivoting Louvers Required for Chameleon Suit Directional Shading
- Louver Size for IR Corner Reflectors is Compatible With Application (~.03 mm deep)
- Major Development Challenges
 - Integration in Flexible Garment
 - Removable Louver Layers

Sensing & Control Integration



- Systems Embodying the Required Functions Are Being Developed for Many Uses
- Key Challenges Will Be:
 - Space Environment Compatibility
 - Limiting Weight & Maintaining Flexibility With Many Layers

Mission Benefits Assessment

- Substantial Launch Mass Savings
 - Savings For All Missions
 - EVA Intensive 1000 Day Class Missions Benefit Most
- ~ 3.5 Kg Reduction in EVA Carry Mass
- Capability for Non-Venting Operations in Most Environments
 - Science & Servicing Flexibility

Summary & Conclusions

- Studying the Chameleon Suit Reveals Many New Challenges
 - None Have Yet Proved Insoluble
- Many Required Technology Advances are Pursued Elsewhere
 - Specific Development and Adaptation Work is Required
- Potential Benefits to NASA are Substantial and Real
 - Further Study Should be Pursued