SailBeam

Space Propulsion by Macroscopic Sail-type Projectiles

Presented at the 2001 NIAC Workshop *Atlanta, GA* October 30 - 31, 2001

> Dr. Jordin T.Kare Kare Technical Consulting 222 Canyon Lakes Place San Ramon, CA 94583 925-735-8012 jtkare@attglobal.net

28-Oct-01 1

SailBeam

Laser Sails: A Quick Review

The SailBeam Concept

Kare Technical Consulting

28-Oct-01 3

SailBeam Scaling

- For fixed sail velocity and mission energy*
 - Transmit aperture area $a_t = A_t / N$

• Transmit aperture diameter $d_f = D_f / N^{1/2}$

- OR, For fixed laser power and aperture
 - Maximum sail velocity

14

- Payload mass is limited only by mission energy
- In either case
 - High Flux at sail
 - High Sail acceleration

 $\phi_{s}(N) = \phi_{s}(1) * N$ $a_{s} = A_{s} * N$

*Mission energy = laser power * laser run time

Metal Sails Are Flux Limited

Dielectric Sails Beat the Flux Limit

n = index of refraction

Transmitted flux T = I - R - A

Absorbed flux $A \sim I \alpha t$

α = absorption coefficient (1/absorption length) t = thickness

$$I(\alpha t) = 2 \varepsilon \sigma T^4$$

Absorption (α *t*) can be extremely small -- 10⁻¹²

Microsail Performance Can Be Impressive

Wavelength	1 μm
Index of refraction	1.6
Reflection	0.19
coefficient	
Sail thickness	0.156 μm
Density	2.6
Areal density	406 mg/m ²

Maximum laser flux	1014 W/m2
Absorption	10-12
Infrared emissivity	0.01 (nominal)
Radiated power	100 W/m ²
Operating temp.	~684 K
Maximum force	125 kN/m ²
Acceleration	3.1 x 10 ⁸ m/s ²

That's 32 MILLION G's "Zero to lightspeed in 0.97 seconds"

Vehicle Velocity Limit

• Treat sail beam as continuous momentum flow

- dm/dt * v in laser frame - $dm/dt * (v - v_{vehicle})$ in vehicle frame

For vehicle mass = sail mass, v_{vehicle} = 0.86 v_{sail}

Sail Material Options

- CVD Diamond has the highest performance
- SiO₂ and Si have the largest technology base (IC industry)
- Glass (doped SiO₂) has the lowest bulk absorption (fiber optics)
- ZrO₂ (a common optical coating) is strong at high temperatures

Multilayer Sails Are Usually Better

If they can be fabricated

- $R = (n^{2N} 1 / n^{2N} + 1)^2$
 - N quarter-wave layers spaced by quarter-wave vacuum

Reflectivity of Film Materials

*HfO₂, ScO₂ similar Am. diamond = Amorphous diamond film

Relative Acceleration, Fixed Flux

• Reflectivity * index * λ / density determines acceleration (at fixed flux)

Relative Acceleration, Temperature Limited

A simple first cut:

- Assumes constant absorption and emittance, flux $\propto T^4$
- Uses melting/decomposition temperature for T

SailBeam

Sample Point Designs

VEHICLE MASS, KG	1000	SAIL MASS, KG		1000					
VEHICLE VELOCITY, KM/S	3 X 1O 7	SAIL VELOCITY, KM/S		3.6 X 1O 7					
		SAIL ACCEL., KM/S 2		10,000					
ACCELERATION RANGE, KN	1 65,000.0	SAIL ACCEL. TIME, S		3.6					
SAIL MATERIAL	DIAMOND	SI 2µM	GLASS (SIO2)	GLASS (SIO2)					
	2 LAYERS	2 LAYERS	3 LAYERS	1 LAYER					
LASER WAVELENGTH, µN	1 O.5	2	O .5	O.5					
LASER POWER, GW	25	25	25	100					
DENSITY, G/CM 3	4.4	3.4	2.6	2.6					
REFRACTIVE INDEX	7.0	4.7	3.2	3.2					
SAIL REFLECTIVITY	0.97	0.87	0.79	0.19					
LAYER THICKNESS, µM	0.04	0.21	0.08	0.08					
AREAL DENSITY, MG/M 2	314	1459	609	203					
SAIL DIAMETER, M	0.26	O .11	0.16	O.28					
TELESCOPE DIA., M	310	2820	480	280					
SAIL MASS, MG	16	14	13	13					
OF SAILS, MILLIONS	62	69	77	79					
TOTAL ACCEL. TIME, YEA	RS 7.1	7.9	8.8	9.0					

Blue = derived value

Potential Limits on Microsails

- Absorption
- Mechanical strength / beam uniformity
- Stability and beam tracking
- Sail structure and attachments
 - Nothing <u>but</u> a dielectric film can survive 100 MW/cm² for long
- Sail guidance
 - How to hit the vehicle's "sweet spot" over a light-year?
- Momentum transfer
 - How to do it?
 - Impact limits -- even 0.0001 kg packs a large punch at 0.1 c
 - Inelasticity -- how much energy ends up in the vehicle?

Thin Layer Absorption / Damage

- Damage thresholds not well known
 - Most data are from multilayer reflectors and sub-µs laser pulses
 - Not directly applicable to single-layer microsails, CW laser
 - Bulk of recent data are on SiO₂ and HfO₂
- Film absorption is typically 10⁻⁶ or higher
 - Several orders of magnitude higher than bulk absorption
 - Heavily dependent on fabrication method
 - Usual methods (sputtering, vapor deposition) deposit porous layers, varying amounts of impurities
 - Low absorption was rarely the main goal of process development
 - Bulk absorption appears to dominate, but surface absorption is significant
 - Measurements are indirect and quite difficult

Thin Layer Absorption / Damage (2)

- SailBeam allowable absorption is design-dependent
 - Flux limit depends on material emissivity and temperature limits
 - Transmitter aperture diameter varies as (max flux)^{-1/2}
 - 10⁻¹⁰ absorption probably acceptable; >10⁻⁸ presents problems
- Conclusion: R&D needed
 - Experimental measurement of limiting flux
 - Long pulses (~millisecond) and single-layer films
 - Process development and/or "new" processes to reduce absorption, e.g.,
 - Pulling of bulk material (flat version of fiber optic fabrication)
 - Doping and etching of thick wafers

(Processes used to make thin structures in other fields, but not usually used for optical films))

Spin Stabilization

- Microsail must be stable in beam
 - Characteristic time scale ~ $[2(sail diameter)/(acceleration)]^{1/2}$
 - Typically ~100 µs (e.g., 0.1 m sail, 2 x 10⁷ m/s² accel.)
 - << Lightspeed feedback time to transmitter; can't do active stabilization
 - Spin rate must be ~10,000 rps
 - Spin provides at least neutral stability
 - Other projects are investigating stability for other beamdriven systems (e.g., Benford et al., microwave sails)
 - Active damping of oscillations is possible
 - On-sail guidance components, or
 - Platforms spaced along sail acceleration path
- Spin keeps sail in tension
 - Prevents collapse or wrinkling due to nonuniform beam / loads

Guiding Microsails

- Sails will need some course correction capability
 - Finite velocity error at launch: 1 nrad error => 1 km miss at 0.1 l.y.
 - Sail will be perturbed in flight, e.g., by dust impacts
 - Main laser is too diffuse to apply corrections even 1 light-day out
- At least two options:
 - "Guidance stations" along path to ~1 light day
 - Can measure course to <<1 nrad and correct with laser pulses
 Measuring sail-to-sail relative errors is sufficient
 - Corrections extend beyond most solar-system perturbations
 - No requirements on sails, but may not be accurate enough
 - MEMS micropropulsion on sails
 - Few m/s ΔV is sufficient, and feasible even at very small scales
 - Vehicle can provide a "homing beacon" laser
 - Sail sensors and control system are simple, but not trivial

Much Work Remains To Be Done

Tensile Strength

- Tensile loads are comparable to force on sail
 - Centrifugal load due to spin stabilization
 - Acceleration loads on "payload" or low-illumination area
- Tensile strengths of freestanding thin films are poorly known
 - Highly variable, depending on film fabrication details

But some typical values are

- Al₂O₃
 Si
 SiO₂
 CVD diamond
 0.25 GPa (1 GPa ~150,000 psi)
 1 GPa
 2 GPa
 3.5 GPa
- Nominal requirement is $\sigma_{sail} \sim m_{sail} a_{sail} / (d_{sail} t_{sail})$
 - t_{sail} is the sail thickness, nominally $\lambda/4n$
 - Typical values are 3 10 GPa (for 10⁷ m/s² acceleration)

Tensile strength looks OK, but only barely -may drive many aspects of sail and system design

Microsail Conceptual Design

Coupling Microsails To Macroscopic Vehicles

- 1. Magnetic Coupling
- Turn microsail into plasma
 - Use a laser on the vehicle (at a wavelength absorbed by sail), or
 - Run it into something
 - Plasma cloud (Landis shield)
 - Gas/dust cloud (residue of previous sail?)
 - Solid film or mesh (mass << sail)
- Transfer momentum to vehicle
 - Bounce plasma off a magnetic field (MagOrion concept)
 - Elastic; low energy absorption

2. Or emulate ORION

- Let solid (or perhaps vaporized) sail hit something
 - A solid pusher plate
 - A confined gas or plasma
- Reject impact energy via ablated mass or radiation

Ionizing Microsails

• Laser

- Use wavelength absorbed by sail, probably UV
- Thin sail is easy for laser to ablate (vs., e.g., spherical particle)
- Requires ~50 100 MJ / kg -- <1 kJ for typical microsail
 - 3 10 kJ needed for safety margin, pointing error, etc.
- Sail expands into spherical plasma at ~10 km/s
 - Must hit sail 0.01 0.1 s before impact at 10's to 100's of km
 - Must track sail with ~0.1 m accuracy at 10⁵ m
- **Impact** -- proposed by Singer in original 1980 particle-beam paper
 - Let microsail strike something -- solid, particle cloud, gas, plasma
 - High-velocity impact produces X-ray temperatures
 - Low energy requirement, but possibly complex hardware
 - Vehicle must carry sacrificial mass
 - Specific impulse is no longer infinite
 - Cleverness needed to "hit" sail without tossing away >>m_{sail}

SailBeam

MagSail Concept

MagSail Magnetic Field (compressed) β=0.01 Tesla Plasma Interface Shock

Nuclear Propellant (Detonated 2 km Behind MagSail)

Nuclear-pulse-driven MagOrion

Solar-wind-driven MagSail

Estimating MagSail Requirements

- Collective plasma reflection (Dynamic pressure)
- Individual ion deflection (Larmor radius)

$$B^2 / 2\mu_0 >> m_{sail} V_{rel}^2 / \pi r_{loop}^3$$

$$m_{ion}V_{rel} / q B \ll r_{loop}$$

- Nominal design point
 - 100 m loop radius
 - 16 MA loop current
 - 1000 kg loop mass
 - 1 x 10⁷ Amp-m / kg
 superconductor performance

MagSail Drag

$$F_{drag} = 1.175 \pi (N_i m_i \mu_0^{1/2} I r^2 V^2)^{2/3}$$

N_i = Number density of ions (nominally 10⁵ m⁻³, or 0.1/cm³)

m_i = Average ion mass (1 amu)

$$\mu_0 = 4\pi \times 10^{-7}$$

V = Vehicle velocity

For V=0.1c, r=100m, I=16 MA • F_{drag} = 34 N; Thrust ~ 8 N

Suppressing Drag During Acceleration

- Drag is dominated by low-field region far from loop
- 2nd larger loop with opposite dipole cancels field
 - For constant dipole moment, current I varies as 1/r²
 - Central field proportional to I/r, varies as 1/r³
 - Outer loop doesn't affect propulsive MagSail
 - Mass is proportional to I r, so varies as 1/r.
- Expect drag < 1 N at 0.1c
 - Nominally 100m inner and 1 km outer loop radii
 - Modeling and optimization needed

How To Stop When You Get There

- Redeploy MagSail conductor into drag brake
 - Very large, low-current loop
 - B field pressure ~ dynamic pressure of interstellar medium
 - Ideally, continue to expand loop as velocity falls
 - Brake to rest against stellar wind once velocity is <500 km/s

Parameter	Value	Comment	-			
Vehicle mass, kg	1000	excluding brake loop	100000			
Initial velocity, km/s	30,000	0.1 c				
Interstellar ion density, #/m ³	10 ⁵	0.1 ion/cm ³	10000			
Initial dynamic pressure, N/m ²	7.7 x 10 ⁻⁸		- 10000			
Brake loop radius, km	28		í.			
Brake loop current, kA	55		, k			
Magnetic field pressure, N/m ²	6.1 x 10 ⁻⁷	Β ² /2μ	1000			
Superconductor J/rho, A-m/kg	10 ⁷		(elo			
Brake loop mass, kg	968		· ·			
Initial drag force, N	1405		100			ļ
				0 1	0 2	20 3

DECELERATION TIME (YEARS

Precursor Missions

• Microsails can transmit energy as well as momentum

- Thrust can be generated in any direction
 - Allows rendezvous and return missions
- Requires energy conversion to drive thruster
 - Direct, e.g., run sail into a contained plasma
 - Indirect, e.g., compress magnetic field to produce current to drive a plasma thruster
- Efficiency is low compared to alternatives...
 - Efficiency is at best sail velocity/c; can't scale down sail velocity (and therefore laser/optics size) by much
 - Probably not competitive below 0.01 c = 3000 km/s
- ...But a prime alternative is laser propulsion
 - Laser-thermal (pulsed ablation) or laser-electric
 - Suitable for missions up to perhaps 0.02 c
 - Direct technology precursors (lasers, optics) for SailBeam

SailBeam

Comparing Energy Requirements

to accelerate 1000 kg to various velocities

Near Term Experiments

- "Sail" diameters ~1 mm or less
 - Still a thin film: >>1000:1 width:thickness
 - Variety of materials and fabrication processes available
- Laser pulse power ~1 MW
 - 1 MW of laser power yields ~1 million G acceleration
- Laser pulse lengths ~ 1 msec
 - Final velocities of 10 30 km/s
 - Suffiicient to demonstrate stable acceleration
- Existing facilities meet requirements
 - E.g., LHMEL (Air Force Wright-Patterson)
 - 1 kJ Nd-Glass flashlamp-pumped laser
 - ~1 msec "dump" mode
 - Experiments fit in a 5 50 meter long vacuum pipe

Near Term (Phase 2) Experiment Goals

- Measure damage/failure flux for films
 - Test likely materials under CW conditions
 - Develop and test alternate film fabrication methods
- Demonstrate "static thrust"
 - MEMS force gauges integrated with film
- Demonstrate enhanced thrust with multilayers
- Measure film absorption and thermal balance
 - Difficult but not unprecedented measurements
 - Use photoacoustic or photoelastic techniques plus IR radiometry
- Demonstrate "free flight" acceleration to >10 km/s

Force Measurement Concept

Conclusions

- Real interstellar probes are possible
 - 0.1 c or faster; Alpha Centauri in 10 years?
 - Multi-kg (or even multi-ton) payloads
- System requirements are (relatively) modest
 - ~0.2 GW-year of laser output per kg to 0.1 c
 - Sub kilometer scale optics
 - Sub-meter scale thin film sails
- Development can be done soon
 - Development path overlaps with laser propulsion/beamed energy
 - Key aspects are small scale, e.g., thin film absorption

• Real experiments can start right away