SailBeam

Space Propulsion by Macroscopic Sail-type Projectiles

Presented at the 2001 NIAC Workshop

Atlanta, GA October 30 - 31, 2001

> Dr. Jordin T.Kare Kare Technical Consulting 222 Canyon Lakes Place San Ramon, CA 94583 925-735-8012 jtkare@attglobal.net

Laser Sails: A Quick Review

Laser "Lens"

power P Area A wavelength λ Diameter D

- Infinite specific impulse
- Efficient thrust at relativistic velocities

BUT

- Limited acceleration → large R (10¹² km)
- LARGE optics and sails D_t D_s ~ 10⁹ m²

Sail

 $\begin{array}{lll} \text{Mass/area} & \sigma \\ \text{Mass} & \text{M}_s \\ \text{Area} & \text{A}_s \\ \text{Diameter} & \text{D}_s \\ \text{Reflectivity} & \eta \end{array}$

Acceleration time 7

The SailBeam Concept

Laser "Lens"

power P Area $A_{tN} = A_t / N$ wavelength λ Diameter $D_{tN} = D_t / \sqrt{N}$

- Vehicle accelerated by momentum transfer from microsails
 - Same total time
 - Same laser power, BUT
 - Much smaller transmitter lens
 - Much smaller sails

N microsails

Mass/area σ

Mass $m_s = M_s / N$

Area $a_s = A_s / N$

Diameter $d_s = D_s / \sqrt{N}$

Reflectivity η

Acceleration time:

Total time T

Each sail t = T / N

SailBeam Scaling

- For fixed sail velocity and mission energy*
 - Transmit aperture area $a_t = A_t / N$
 - Transmit aperture diameter $d_t = D_t / N^{1/2}$
- OR, For fixed laser power and aperture
 - Maximum sail velocity $v_s = V_s * N^{1/4}$
 - Payload mass is limited only by mission energy
- In either case
 - High Flux at sail

$$\phi_s(N) = \phi_s(1) * N$$
 $a_s = A_s * N$

$$a_s = A_s * N$$

*Mission energy = laser power * laser run time

Metal Sails Are Flux Limited

Absorption (1- η) is ~1% at best

Dielectric Sails Beat the Flux Limit

Reflected flux

$$R = I[(n^2-1)/(n^2+1)]^2$$

n = index of refraction

Transmitted flux T = I - R - A

Absorbed flux $A \sim I \alpha t$

α = absorption coefficient
 (1/absorption length)
t = thickness

$$I(\alpha t) = 2 \varepsilon \sigma T^4$$

Absorption (αt) can be extremely small -- 10⁻¹²

Microsail Performance Can Be Impressive

Wavelength	1 μm
Index of refraction	1.6
Reflection	0.19
coefficient	
Sail thickness	0.156 μm
Density	2.6
Areal density	406 mg/m ²

Maximum laser flux	1014 W/m ²
Absorption	10-12
Infrared emissivity	0.01 (nominal)
Radiated power	100 W/m ²
Operating temp.	~684 K
Maximum force	125 kN/m ²
Acceleration	3.1 x 10 ⁸ m/s ²

That's 32 MILLION G's "Zero to lightspeed in 0.97 seconds"

Vehicle Velocity Limit

- Treat sail beam as continuous momentum flow
 - dm/dt * v in laser frame dm/dt * (v v_{vehicle}) in vehicle frame
- For vehicle mass = sail mass, v_{vehicle} = 0.86 v_{sail}

Sail Material Options

- CVD Diamond has the highest performance
- SiO₂ and Si have the largest technology base (IC industry)
- Glass (doped SiO₂) has the lowest bulk absorption (fiber optics)
- ZrO₂ (a common optical coating) is strong at high temperatures

Multilayer Sails Are Usually Better

If they can be fabricated

- $R = (n^{2N} 1 / n^{2N} + 1)^2$
 - N quarter-wave layers spaced by quarter-wave vacuum

Reflectivity of Film Materials

*HfO₂, ScO₂ similar

Am. diamond = Amorphous diamond film

Relative Acceleration, Fixed Flux

• Reflectivity * index * λ / density determines acceleration (at fixed flux)

Relative Acceleration, Temperature Limited

A simple first cut:

- Assumes constant absorption and emittance, flux ∞ T⁴
- Uses melting/decomposition temperature for T

Sample Point Designs

VEHICLE MASS, KG	1000	
VEHICLE VELOCITY, KM/S	3 X 1O 7	
ACCELERATION RANGE, KM	1 65,000.0	

SAIL MASS, KG	1000
SAIL VELOCITY, KM/S	3.6 X 1O 7
SAIL ACCEL., KM/S 2	10,000
SAIL ACCEL. TIME, S	3.6

SAIL MATERIAL	DIAMOND	SI 2µM	GLASS (SIO2)	GLASS (SIO2)
	2 LAYERS	2 LAYERS	3 LAYERS	1 LAYER
LASER WAVELENGTH, µ N	1 O.5	2	O.5	O.5
LASER POWER, GW	25	25	25	100
DENSITY, G/CM 3	4.4	3.4	2.6	2.6
REFRACTIVE INDEX	7.0	4.7	3.2	3.2
SAIL REFLECTIVITY	0.97	0.87	0.79	0.19
LAYER THICKNESS, µ M	0.04	0.21	0.08	0.08
AREAL DENSITY, MG/M 2	314	1459	609	203
SAIL DIAMETER, M	0.26	O.11	0.16	0.28
TELESCOPE DIA., M	310	2820	480	280
SAIL MASS, MG	16	14	13	13
OF SAILS, MILLIONS	62	69	77	79
TOTAL ACCEL. TIME, YEAR	RS 7.1	7.9	8.8	9.0

Potential Limits on Microsails

- Absorption
- Mechanical strength / beam uniformity
- Stability and beam tracking
- Sail structure and attachments
 - Nothing <u>but</u> a dielectric film can survive 100 MW/cm² for long
- Sail guidance
 - How to hit the vehicle's "sweet spot" over a light-year?
- Momentum transfer
 - How to do it?
 - Impact limits -- even 0.0001 kg packs a large punch at 0.1 c
 - Inelasticity -- how much energy ends up in the vehicle?

Thin Layer Absorption / Damage

- Damage thresholds not well known
 - Most data are from multilayer reflectors and sub-µs laser pulses
 - Not directly applicable to single-layer microsails, CW laser
 - Bulk of recent data are on SiO₂ and HfO₂
- Film absorption is typically 10-6 or higher
 - Several orders of magnitude higher than bulk absorption
 - Heavily dependent on fabrication method
 - Usual methods (sputtering, vapor deposition) deposit porous layers, varying amounts of impurities
 - Low absorption was rarely the main goal of process development
 - Bulk absorption appears to dominate, but surface absorption is significant
 - Measurements are indirect and quite difficult

Thin Layer Absorption / Damage (2)

SailBeam allowable absorption is design-dependent

- Flux limit depends on material emissivity and temperature limits
- Transmitter aperture diameter varies as (max flux)^{-1/2}
- 10⁻¹⁰ absorption probably acceptable; >10⁻⁸ presents problems

Conclusion: R&D needed

- Experimental measurement of limiting flux
 - Long pulses (~millisecond) and single-layer films
- Process development and/or "new" processes to reduce absorption, e.g.,
 - Pulling of bulk material (flat version of fiber optic fabrication)
 - Doping and etching of thick wafers

(Processes used to make thin structures in other fields, but not usually used for optical films))

Spin Stabilization

- Microsail must be stable in beam
 - Characteristic time scale ~ [2(sail diameter)/(acceleration)]^{1/2}
 - Typically ~100 μ s (e.g., 0.1 m sail, 2 x 10⁷ m/s² accel.)
 - << Lightspeed feedback time to transmitter; can't do active stabilization
 - Spin rate must be ~10,000 rps
 - Spin provides at least neutral stability
 - Other projects are investigating stability for other beamdriven systems (e.g., Benford et al., microwave sails)
 - Active damping of oscillations is possible
 - On-sail guidance components, or
 - Platforms spaced along sail acceleration path
- Spin keeps sail in tension
 - Prevents collapse or wrinkling due to nonuniform beam / loads

Guiding Microsails

- Sails will need some course correction capability
 - Finite velocity error at launch: 1 nrad error => 1 km miss at 0.1 l.y.
 - Sail will be perturbed in flight, e.g., by dust impacts
 - Main laser is too diffuse to apply corrections even 1 light-day out
- At least two options:
 - "Guidance stations" along path to ~1 light day
 - Can measure course to <<1 nrad and correct with laser pulses
 - Measuring sail-to-sail relative errors is sufficient
 - Corrections extend beyond most solar-system perturbations
 - No requirements on sails, but may not be accurate enough
 - MEMS micropropulsion on sails
 - Few m/s ΔV is sufficient, and feasible even at very small scales
 - Vehicle can provide a "homing beacon" laser
 - Sail sensors and control system are simple, but not trivial

Much Work Remains To Be Done

Tensile Strength

- Tensile loads are comparable to force on sail
 - Centrifugal load due to spin stabilization
 - Acceleration loads on "payload" or low-illumination area
- Tensile strengths of freestanding thin films are poorly known
 - Highly variable, depending on film fabrication details

But some typical values are

```
    Al<sub>2</sub>O<sub>3</sub> 0.25 GPa (1 GPa ~150,000 psi)
    Si 1 GPa
    SiO<sub>2</sub> 2 GPa
    CVD diamond 3.5 GPa
```

- Nominal requirement is σ_{sail} ~ m_{sail} a_{sail} / (d_{sail} t_{sail})
 - t_{sail} is the sail thickness, nominally $\lambda/4n$
 - Typical values are 3 10 GPa (for 10⁷ m/s² acceleration)

Tensile strength looks OK, but only barely -- may drive many aspects of sail and system design

Microsail Conceptual Design

Coupling Microsails To Macroscopic Vehicles

1. Magnetic Coupling

- Turn microsail into plasma
 - Use a laser on the vehicle (at a wavelength absorbed by sail), or
 - Run it into something
 - Plasma cloud (Landis shield)
 - Gas/dust cloud (residue of previous sail?)
 - Solid film or mesh (mass << sail)
- Transfer momentum to vehicle
 - Bounce plasma off a magnetic field (MagOrion concept)
 - Elastic; low energy absorption

2. Or emulate ORION

- Let solid (or perhaps vaporized) sail hit something
 - A solid pusher plate
 - · A confined gas or plasma
- Reject impact energy via ablated mass or radiation

Ionizing Microsails

Laser

- Use wavelength absorbed by sail, probably UV
- Thin sail is easy for laser to ablate (vs., e.g., spherical particle)
- Requires ~50 100 MJ / kg -- <1 kJ for typical microsail
 - 3 10 kJ needed for safety margin, pointing error, etc.
- Sail expands into spherical plasma at ~10 km/s
 - Must hit sail 0.01 0.1 s before impact at 10's to 100's of km
 - Must track sail with ~0.1 m accuracy at 10⁵ m
- Impact -- proposed by Singer in original 1980 particle-beam paper
 - Let microsail strike something -- solid, particle cloud, gas, plasma
 - High-velocity impact produces X-ray temperatures
 - Low energy requirement, but possibly complex hardware
 - Vehicle must carry sacrificial mass
 - Specific impulse is no longer infinite
 - Cleverness needed to "hit" sail without tossing away >>m_{sail}

MagSail Concept

Solar-wind-driven MagSail

Nuclear-pulse-driven MagOrion

Estimating MagSail Requirements

- Collective plasma reflection (Dynamic pressure)
- Individual ion deflection (Larmor radius)

$$B^2/2\mu_0 >> m_{sail}V_{rel}^2/\pi r_{loop}^3$$

$$m_{ion}V_{rel}/qB \ll r_{loop}$$

Nominal design point

- 100 m loop radius
- 16 MA loop current
- 1000 kg loop mass
- 1 x 10⁷ Amp-m / kg
 superconductor performance

MagSail Drag

$$F_{drag} = 1.175 \pi (N_i m_i \mu_0^{1/2} I r^2 V^2)^{2/3}$$

N_i = Number density of ions (nominally 10⁵ m⁻³, or 0.1/cm³)

m_i = Average ion mass (1 amu)

 $\mu_0 = 4\pi \times 10^{-7}$

I = Loop current

r = Loop radius

V = Vehicle velocity

For V=0.1c, r=100m, I=16 MA
• F_{drag} = 34 N; Thrust ~ 8 N

Suppressing Drag During Acceleration

- Drag is dominated by low-field region far from loop
- 2nd larger loop with opposite dipole cancels field
 - For constant dipole moment, current I varies as 1/r²
 - Central field proportional to I/r, varies as 1/r³
 - Outer loop doesn't affect propulsive MagSail
 - Mass is proportional to I r, so varies as 1/r.
- Expect drag < 1 N at 0.1c
 - Nominally 100m inner and 1 km outer loop radii
 - Modeling and optimization needed

How To Stop When You Get There

- Redeploy MagSail conductor into drag brake
 - Very large, low-current loop
 - B field pressure ~ dynamic pressure of interstellar medium
 - Ideally, continue to expand loop as velocity falls
 - Brake to rest against stellar wind once velocity is <500 km/s

Parameter	Value	Comment
Vehicle mass, kg	1000	excluding brake loop
Initial velocity, km/s	30,000	0.1 c
Interstellar ion density, #/m ³	10 ⁵	0.1 ion/cm ³
Initial dynamic pressure, N/m ²	7.7 x 10 ⁻⁸	
Brake loop radius, km	28	
Brake loop current, kA	55	
Magnetic field pressure, N/m ²	6.1 x 10 ⁻⁷	B ² /2μ
Superconductor J/rho, A-m/kg	10 ⁷	
Brake loop mass, kg	968	
Initial drag force, N	1405	

Precursor Missions

- Microsails can transmit energy as well as momentum
 - Thrust can be generated in any direction
 - Allows rendezvous and return missions
 - Requires energy conversion to drive thruster
 - Direct, e.g., run sail into a contained plasma
 - Indirect, e.g., compress magnetic field to produce current to drive a plasma thruster
- Efficiency is low compared to alternatives...
 - Efficiency is at best sail velocity/c; can't scale down sail velocity (and therefore laser/optics size) by much
 - Probably not competitive below 0.01 c = 3000 km/s
- ...But a prime alternative is laser propulsion
 - Laser-thermal (pulsed ablation) or laser-electric
 - Suitable for missions up to perhaps 0.02 c
 - Direct technology precursors (lasers, optics) for SailBeam

Comparing Energy Requirements

to accelerate 1000 kg to various velocities

Near Term Experiments

- "Sail" diameters ~1 mm or less
 - Still a thin film: >>1000:1 width:thickness
 - Variety of materials and fabrication processes available
- Laser pulse power ~1 MW
 - 1 MW of laser power yields ~1 million G acceleration
- Laser pulse lengths ~ 1 msec
 - Final velocities of 10 30 km/s
 - Sufficient to demonstrate stable acceleration
- Existing facilities meet requirements
 - E.g., LHMEL (Air Force Wright-Patterson)
 - 1 kJ Nd-Glass flashlamp-pumped laser
 - ~1 msec "dump" mode
 - Experiments fit in a 5 50 meter long vacuum pipe

Near Term (Phase 2) Experiment Goals

- Measure damage/failure flux for films
 - Test likely materials under CW conditions
 - Develop and test alternate film fabrication methods
- Demonstrate "static thrust"
 - MEMS force gauges integrated with film
- Demonstrate enhanced thrust with multilayers
- Measure film absorption and thermal balance
 - Difficult but not unprecedented measurements
 - Use photoacoustic or photoelastic techniques plus IR radiometry
- Demonstrate "free flight" acceleration to >10 km/s

Force Measurement Concept

Conclusions

- Real interstellar probes are possible
 - 0.1 c or faster; Alpha Centauri in 10 years?
 - Multi-kg (or even multi-ton) payloads
- System requirements are (relatively) modest
 - ~0.2 GW-year of laser output per kg to 0.1 c
 - Sub kilometer scale optics
 - Sub-meter scale thin film sails
- Development can be done soon
 - Development path overlaps with laser propulsion/beamed energy
 - Key aspects are small scale, e.g., thin film absorption
- Real experiments can start right away