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Motivation:  Coulomb Clusters

“How to build a tractor beam
Without gravitons”

• Ions in 1/r2 confining potential
form stable crystal formations

• What would charged spacecraft
do in a gravity potential?

Laser-cooled trapped ion research at NIST
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Presentation Overview

• Introduction to formation flying

• Space-based imaging and interferometry

• Formation propulsion requirements

• Spacecraft charging as control force

• Coulomb force metrics

• Coulomb formation orbital dynamics
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Space-based Imaging Concepts

Space-based imaging problem:
• Image resolution limited by size of aperture:  θ=λ/d

…but…
• Spacecraft size limited by launch vehicle fairing (~ 4m)

Solution #2:
Separated Interferometer

Collector Collector

Combiner

d effective

Solution #1:
Deployable structure

d
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Interferometry Basics

• Spatial frequencies in the image are given by u,v points
• Each unique physical separation yields amplitude at one u,v point

(x1,y1)

(x2,y2) d

Two Spacecraft
In physical plane

y

x (u1,v1) u

v

Single amplitude
In Fourier plane

u = x2-x1/λ

v = y2-y1/λ

Inverting Spatial Frequency       Spatial Amplitude       Image

To perform the inversion we need to fill the u,v plane
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Physical
Plane

Fourier
Plane Finite apertures can fill-in

Holes in u-v plane

Consider single aperture
As array of sub-apertures

(xi, yi)

•Kong, E.M., “Optimal Trajectories and Orbit Design for Separated
Spacecraft Interferometry,” Master’s Thesis, MIT Dept. of Aeronautics
and Astronautics, November, 1998.
•Cornwell, T.J., “A Novel Principle for Optimization of the Instantaneous
Fourier Plane Coverage of Correlation Arrays,” IEEE Trans. On Antennas
and Propagation, Vol. 36, No. 8, 1165-1167.
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Interferometry for Formations

(xi, yi)
(xj, yj)

d

All separations (u,v points) less
Than d are covered by a single aperture

Separations (u,v points) greater than d
Must come from separated spacecraft

> d

Implication:
• To provide seamless u,v coverage spacecraft must fly

within close proximity (~ d) of each other
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Formation Flying Introduction

Optimal imaging configurations yield non-optimal orbital trajectories

Inertial Orbit

Non-inertial Orbit

Non-inertial Orbit

Rigid Formation

• Requires constant thrust
• Good imaging properties

Time-varying position
About center satellite

Family of inertial orbits

Dynamic Formation

• Thrust only for error correction
• Complicated imaging
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Propulsion Requirements

For rigid formation: 0... ===== yyxx &&&&&&
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Hill’s Equations for Formation

Ω = angular velocity (for GEO Ω =7.3x10-5 rad/sec)Figure reprinted from Kong, E.M., “Optimal Trajectories and Orbit Design for Separated
Spacecraft Interferometry,” Master’s Thesis, MIT Dept. of Aeronautics
and Astronautics, November, 1998.
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Coulomb Control Forces

• Engineering throttleable thrusters for 10 µN is tough
• Current candidates (FEEP, Colloid) exhaust contaminants
• Collisions are of paramount concern

Is there a better way to control the formation?      YES!Maybe!
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If the plasma Debye length is larger
than spacecraft separation, Coulomb
forces could be used
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Spacecraft Charging

Spacecraft

Plasma e-
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For equilibrium, Mother
Nature adjusts spacecraft
voltage such that net
current is zero.

We can change the spacecraft voltage by creating a current imbalance
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• Electron emission drives Vsc positive
• Ion emission drives Vsc negative
• Spacecraft potential control is naturally stable

Spacecraft Charge Control
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1-m-radius spacecraft charging analysis
for average GEO plasma environment
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Spacecraft in average GEO plasma with FEEP
Thruster technology (Isp = 10,000 sec, η = 0.65)
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0.0280.0500.1860.00683TOTAL PROPULSION
SYSTEM MASS (kg)

0.0240.0050.0970.0068INERT MASS (kg)

0.11250.2160.370.22MASS/POWER
RATIO   (kg/W)

0.2090.0210.2610.031 INPUT POWER   (W)

0.0040.0450.0890.00003
(using H2 for
Ion source)
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Mission design parameters for two-spacecraft flying in
20-m formation (located on Hill’s z-axis)
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Coulomb Orbit Dynamics

Do formations exist for forces acting only along position vectors?

Figure reprinted from Kong, E.M., “Optimal Trajectories and Orbit Design for Separated
Spacecraft Interferometry,” Master’s Thesis, MIT Dept. of Aeronautics
and Astronautics, November, 1998.
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• 3-spacecraft formations considered
• 3 canonical orientations
• Hill’s equations for relative motion
• GEO orbit with 10-m separation
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3-Spacecraft Orbital Analysis

Equilibrium solutions to Hill’s equations
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Parameter Vscr is like equivalent charge:
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Spacecraft 1

Spacecraft 3

Spacecraft 2

Spacecraft 4

Spacecraft 0

4 collector + 1 combiner
Imaging configuration
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5-Spacecraft Formation

1

2

3

4

0 • Special case of 3-spacecraft z stack
• Vehicle 2 and 4 remain neutral

Solution Family 1
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5-Spacecraft Formation

Solution Family 2

Spacecraft 1 & 3
Spacecraft 0• All 5 Spacecraft charged

• Minimum Vscr identified
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Phase I Summary

Conclusions
• Coulomb forces comparable with best thrusters
• Continuous force dither/variation is possible
• Required charge control demonstrated as early as 1979 (SCATHA)
• Rich family of orbital solutions possible
• Particularly suited to Fizeau interferometry (visible GEO imager?)
• Coulomb control works best where thrusters work worst => synergistic control
• Coulomb control can help with collision avoidance
• Even if Coulomb is not used for control……

natural charging will be significant perturbation that must be addressed!

On-going tasks

• Examine formations for stability
• Develop dynamic simulation
• Formulate control laws
• Search for more complicated formation solutions
• Perform vehicle sizing analysis for canonical mission


