
FORMATION FLYING WITH SHEPHERD SATELLITES

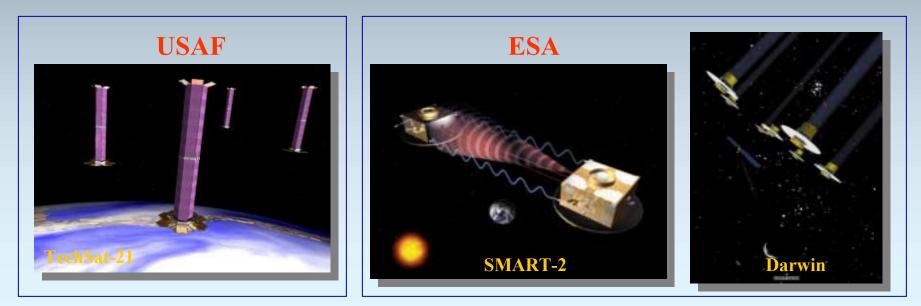
2001 NIAC Fellows Meeting Michael LaPointe Ohio Aerospace Institute

WHAT IS FORMATION FLYING?

Two or more satellites flying in prescribed orbits at a fixed separation distance for a given period of time

Example:

EO-1 and Landsat-7 satellites are currently formation flying in LEO to provide high resolution images of Earth's environment



NASA -GSFC

Planned Formation Flying Missions

NASA

...And Future Arrays Are Predicted With Multiple (10 – 100) Nanosatellites WHAT ARE THE BENEFITS?

Lower Life Cycle Cost

Enhance/Enable Missions

BUT THERE ARE SIGNIFICANT CHALLENGES...

Reduce Mission Risk

Adapt to Changing Missions

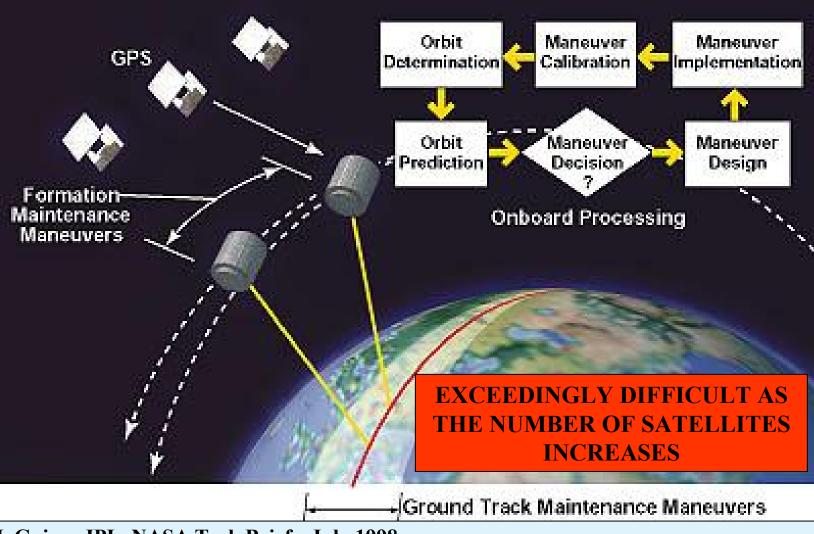
KEY ISSUES

Initial Array Formation

- Insertion into proper orbit
- Separation from launch vehicle
- Maneuver into array formation

Array Reconfiguration

• Change formation to meet new mission requirements or new viewing opportunities


GUIDANCE, NAVIGATION, PROPULSION, AND CONTROL

Array Control

• Orbit perturbations will cause spacecraft to drift out of alignment

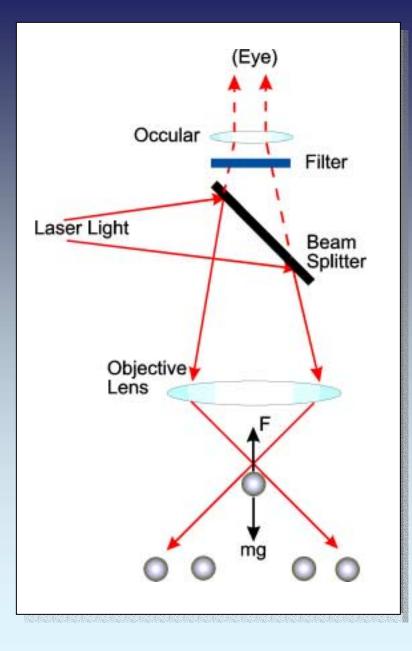
CURRENT APPROACH TO SATELLITE GNC USES GPS AND ON-BOARD ALGORITHMS

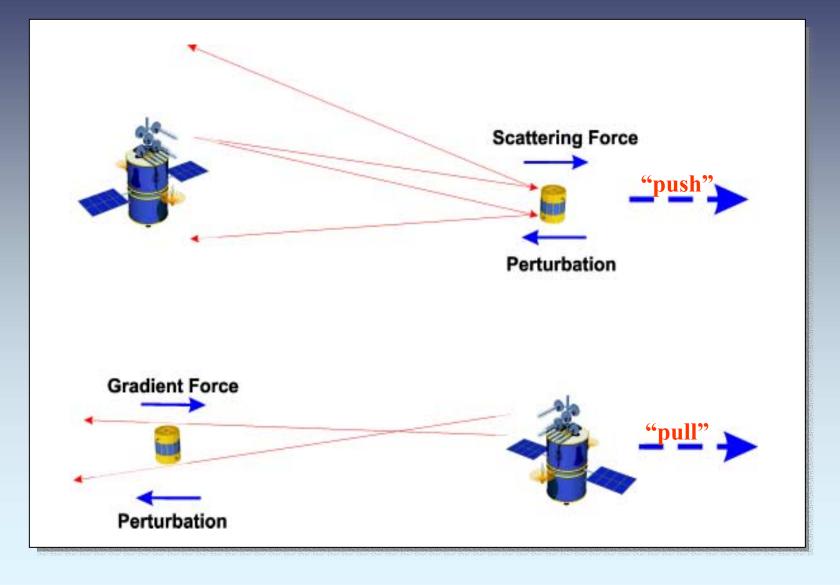
J. Guinn, JPL, NASA Tech Briefs, July 1998

SOME OF THE CHALLENGES

- GPS is not sufficiently accurate for interferometer applications
- Closed-loop algorithms for autonomous N-body control are not yet developed
- Propulsion system exhaust may interfere with instrumentation of neighboring microsatellites in the array
- Propellant mass required for continuous array control reduces the microsatellite mass allotted to instrumentation
- Power system mass for higher specific impulse electric thrusters also reduces available mass for instrumentation
- Proposed solutions, such as tethering satellites to form an array, may be difficult to implement for arrays with several satellites or for arbitrary array geometries

NIAC PHASE I PROPOSAL


Use "shepherd satellites" flying outside the array to provide guidance, navigation and control functions


CONCEPT BASED ON OPTICAL SCATTERING FORCE AND GRADIENT FORCE TECHNIQUES

- Stable levitation and trapping of microscopic particles using mW lasers
- Techniques used in biology, material science, etc.

Idea is to extend method to higher powers, longer wavelengths, and larger objects (microsatellites)...

RADIATION FORCES FOR MICROSATELLITE ARRAY CONTROL

BASIC FEASIBILITY QUESTIONS

- How would it work?
 - Can we extend optical techniques to longer wavelengths and larger "particle" sizes?
- What are the required force levels?
 - Overcome orbit perturbations
 - Maneuver or reconfigure array
- What are the required power levels?
 - Use solar arrays to power beams
 - Don't fry the science microsatellites
- How many shepherd satellites are required?
 - Depends on array formation (number, geometry)
 - Require significantly fewer shepsats than microsats

ANALYTIC MODELS

Rayleigh Approximation: Diameter << Wavelength (Electromagnetic Wave Theory)

Mie Approximation: Diameter ≥ Wavelength (Geometric/Ray Optics Theory)

Dielectric Material

Metallic Material

- Analysis can be extended to arbitrary EM wavelengths
- Emphasis placed on Mie approximation (microwaves)
- Models used to predict radiation force per unit power

ELECTROMAGNETIC SCATTERING FORCES

$$F_{s} = \frac{n_{1}Q_{s}P}{c}$$

$$\begin{aligned} \mathbf{Q}_{s} = & \left\{ 1 + \operatorname{Rcos}(2\Theta_{1}) - \frac{\operatorname{T}^{2}[\cos 2(\Theta_{1} - \Theta_{2}) + \operatorname{Rcos}(2\Theta_{1})]}{1 + \operatorname{R}^{2} + 2\operatorname{Rcos}\Theta_{2}} \right\} \end{aligned}$$

dielectric
$$\begin{aligned} \mathbf{Q}_{s} = & \left\{ 1 + \operatorname{Rcos}(2\Theta_{1}) \right\} \text{ metallic} \end{aligned}$$

R = Reflection Coefficient, T = Transmission Coefficient \rightarrow_1 = incident angle, \rightarrow_2 = refraction angle, c= speed of light, n_1 = refractive index (vacuum), P = incident beam power

ELECTROMAGNETIC GRADIENT FORCES

ARISE FROM INTERACTION OF INCIDENT ELECTRIC FIELD WITH INDUCED DIPOLE MOMENT OF OBJECT

$$U(\mathbf{r},\mathbf{t}) = -\frac{1}{2}(\vec{\mathbf{p}}\cdot\vec{\mathbf{E}}) = -\frac{1}{2}\mathbf{p}\mathbf{E}\mathbf{cos}\Theta$$

$$\vec{F}_{grad}(r,t) = -\nabla U(r,t) = \frac{1}{2}\nabla(\vec{p}\cdot\vec{E})_{\Theta=fixed}$$

U=potential energy, p=dipole moment, E=external electric field

ELECTROMAGNETIC GRADIENT FORCES

Geometric Optics Approximation:

$$F_{G} = \frac{n_{1}Q_{G}P}{c}$$

$$Q_{G} = \left\{ Rsin(2\Theta_{1}) - \frac{T^{2}[sin2(\Theta_{1} - \Theta_{2}) + Rsin(2\Theta_{1})]}{1 + R^{2} + 2Rcos\Theta_{2}} \right\}$$
dielectric

$$Q_G = \{Rsin(2\Theta_1)\}$$
 metallic

Integrate over incident angles for total force

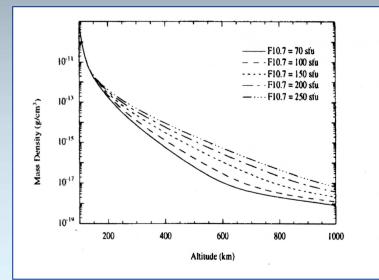
PRELIMINARY RESULTS

Analytic Models Predict Scattering and Gradient Forces of ~ 10⁻¹¹ N/W to ~ a few 10⁻⁹ N/W

Based on these results...

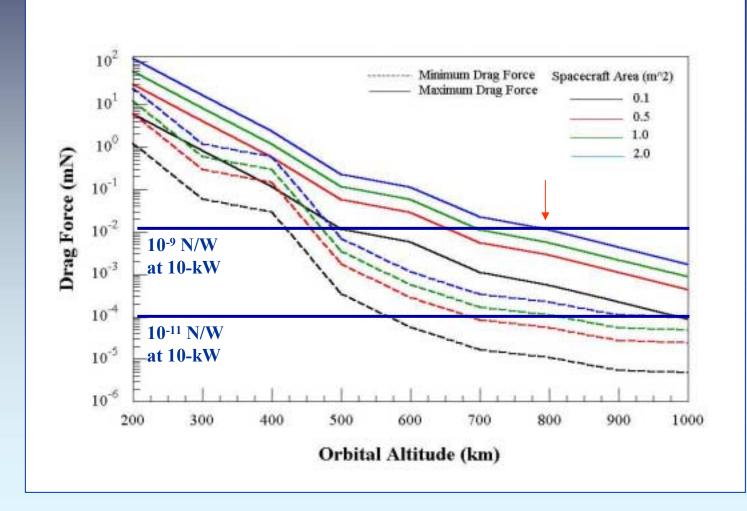
- Assume 10⁻⁹ N/W can be achieved
- Assume 10-kW to 100-kW power levels
- Provides restoring forces of 10⁻⁵ N to 10⁻⁴ N

WHAT CAN WE DO WITH THIS?



LOW EARTH ORBIT

Drag Force:


$$F_{\rm D} = \frac{1}{2} M \rho V^2 B^{-1}$$

M = spacecraft mass (kg) $\rho = atmospheric density (kg/m^3)$ V = orbital velocity (m/s) $B = ballistic coefficient = M/(C_DA)$ $A = cross-sectional area (m^2)$ $C_D = drag coefficient; 2 \le C_D \le 4$

MSIS Density Model, Hedin, JGR 96, 1999

LOW EARTH ORBIT

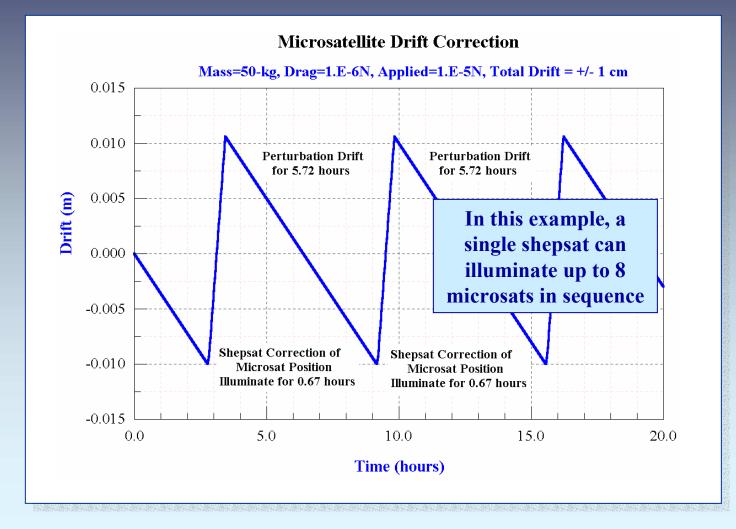
LOW EARTH ORBIT

Drag make-up at orbital altitudes above 800-km

$$\mathbf{F}_{net} = \mathbf{F}_{rad} - \mathbf{F}_{drag}$$

• 50-kg microsatellite

• 1000-km orbit


Example:

- Cross-sectional area = 1-m²
- 10⁻⁵ N restoring force
 U 10⁻⁹ N/W @ 10-kW
- Maintain position ± 1-cm

LOW EARTH ORBIT

LOW EARTH ORBIT

- Drag correction appears feasible at higher altitudes (>800-km)
- Single shepsat can illuminate several microsats in sequence
- Time on target depends on required force, degree of correction - less drag for smaller satellite areas and higher satellite orbits

Potential Uses in LEO below 800-km

- Provide positioning beacons for array formation
 - Single shepsat can provide discrete EM intensity "matrix"
 - Sensors position microsats at points of maximum intensity
 - Microsats require propulsion, but simpler GNC routines
 - Ground/autonomous control of shepsat vs. full array

GEOSYNCHRONOUS EARTH ORBIT

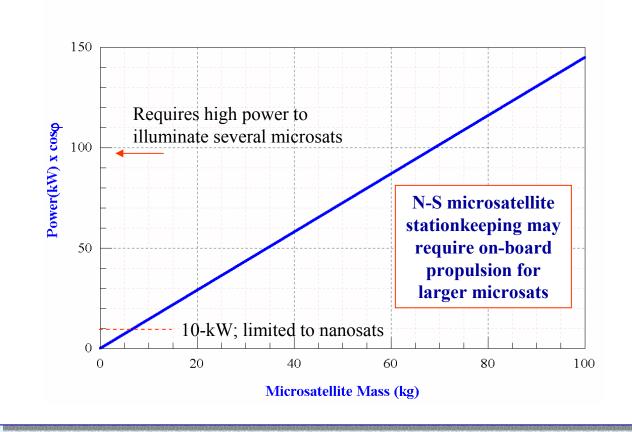
- Orbital altitude = 37,786 km (Geostationary Orbit)
- Atmospheric drag is negligible
- Other perturbations become important:
 - North-South perturbations due to Sun and Moon
 - East-West perturbations due to solar radiation
 - East-West perturbations due to Earth triaxiality

Sufficient Force to Overcome These Perturbations?

GEOSYNCHRONOUS EARTH ORBIT

North-South perturbations due to Sun and Moon

• Changes satellite inclination over time


$$\frac{\mathrm{di}}{\mathrm{dt}} = \frac{\mathrm{rcos}\varphi}{\omega a^2 \sqrt{1-e^2}} \mathrm{W} \approx \frac{0.85^{\circ}}{\mathrm{year}} \qquad \mathrm{W} = \left(\frac{1.45 \times 10^{-6}}{\cos\varphi}\right) \frac{\mathrm{m}}{\mathrm{s}^2}$$

• Need to supply restoring force to overcome perturbing acceleration:

$$P \times 10^{-9} \frac{N}{W} \ge M \left(\frac{1.45 \times 10^{-6}}{\cos \varphi} \right)$$

GEOSYNCHRONOUS EARTH ORBIT

Power required to compensate for changes in inclination

GEOSYNCHRONOUS EARTH ORBIT

East-West Perturbations from Solar Radiation Forces

• Changes orbital eccentricity and orientation of apsidal line:

Results in an acceleration:

$$\Delta a = S(1+\sigma)\frac{A}{M}$$

S = solar constant, A = area, M = microsat mass, σ = average reflectivity

• Assuming shepsat restoring force of 10⁻⁵ N yields condition:

$$(1+\sigma)A \le 2.2m^2$$

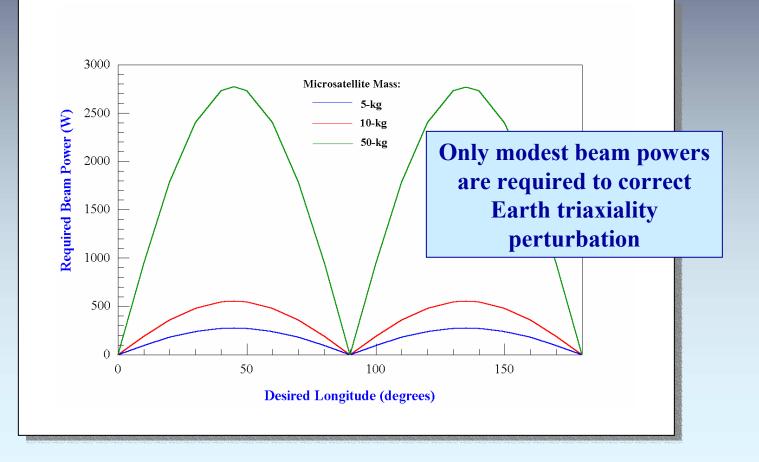
Easily met for most planned microsats

GEOSYNCHRONOUS EARTH ORBIT

North-South Perturbations due to Earth's Triaxiality

- Equatorial cross-section is approximately elliptical
- Minor ellipse axis passes through 75°E, 105°W longitude
 - Stable points; satellites at these locations will stay there
 - At any other longitude, satellite will drift toward and oscillate around the nearest equilibrium point

$$\Delta V(\frac{m}{s} / yr) = 1.75 |\sin(2\gamma_o)|$$


Need to correct this annual change in ΔV

Leads to condition on required beam power:

$$P(W) \ge 55.45 \times M \times |\sin(2\gamma_o)|$$

GEOSYNCHRONOUS EARTH ORBIT

North-South Perturbations due to Earth's Triaxiality

OTHER MISSION APPLICATIONS

Middle Earth Orbit

- Repeat ground track missions
- Reduced atmospheric drag
- Smaller ΔV from solar pressure
- Sun/Moon and triaxial still exist

Deep Space Arrays

- Long-baseline observations
- Minimal orbit perturbations
- "Fine control" provided by an intensity matrix holding the microsatellites in place

SUMMARY

- Formation flying enhances/enables science missions
 Lower life cycle cost, reduced risk, mission adaptable
- Shepherd satellite concept may provide a useful technique for controlling microsatellite positions within the array
 Provide restoring forces ≈ 10⁻⁹ N/W per beam
- Low Earth Orbit

≥ 800-km, provide drag compensation and position control < 800-km, provide intensity markers for microsat positions

- Geosynchronous Earth Orbit
 - Control orbital perturbations for nanosatellites (≤ 10-kg)
 - Larger microsatellites may require on-board propulsion
- Deep Space Arrays
 - Accurate position control using intensity force matrix

NEXT STEPS...

- Additional system definition studies:
 - Shepsat power, propulsion, communications...
 - Microwave power generation (10-kw to 100-kW)
 - Beam formation and pointing accuracy
 - Antenna design: variable focus, ability to scan, etc...
 - Microwave beam interaction with microsatellites
 - Dielectric or reflective "shells" for surface interactions?
 - Protect electronics, instruments, inter-satellite communications
 - Microsatellite reaction control/pointing systems
- Refine numerical models for better force predictions
 - Material interactions, off-angle beam corrections,...
- Experimental validation of force predictions
 - Demonstrate electromagnetic scattering and trapping forces on representative microsatellite test mass

ACKNOWLEDGEMENTS

Support for this Phase I research effort was provided by the NASA Institute for Advanced Concepts

