

A Flexible Architecture for Plant Functional Genomics in Space Environments

Dr. Terri Lomax Department of Botany and Plant Pathology Oregon State University A Flexible Architecture for Plant Functional Genomics in Space Environments

Goals:

- Remotely measure the response of plan to any unique space condition
- Determine gene function
- Optimize plant performance under space conditions

The "NIAC Dilemna"

"Planning for things that will be practical in 2010 - 2040 but needing to demonstrate practibility now"

Dr. Steven Dubowsky, MIT (NIAC Fellow)

Model System to Test Architecture Feasibility

Arabidopsis thaliana:

model plant system

defined gravitropic response

genome sequence complete

targeted gene knock-outs
inefficient

Physcomitrella patens :

- gene knockout efficiencies > 90% via homologous recombination
- defined gravitropic response
- more closely related to dicots than monocots
- similar DNA usage

 used to determine cellular function of an Arabidopsis gene

A Flexible Architecture for Plant Functional Genomics in Space Environments

Microarray Technolog

 temporal and spatial gene expression

 Affymetrix Arabidopsis gene chips with over 8200 genes

 provides information on gene involvement in a process or pathway

Data Mining: Plant Genome Sequence Databases

Moss EST Sequence Databases

The Physcomitrella EST Program University of Leeds, UK/ Washington University, St. Louis, MO

Goal: 30,000 EST sequences To Date: 14,410 moss EST sequences on GenBank

Physcomitrella Genomics Program

University of Freiburg/BASF

To Date: 120,000 EST sequences representing 22,000 different genes

Functional Genomics

Gene function - analysis of gene malfunction

Conventional Approaches:

- manipulate the level of gene expression
- block the expression of a gene

Problems:

- non-directed integration of transgenes
- positional effects
- gene silencing due to co-suppression
- incorrect spatial and temporal expression

Targeted Gene Knock-out through Homologous Recombination

Regeneration following transformation of protoplasts

No selection

Antibiotic selection

Transfer strips of mutagenized tissue and allow Transfer to to regenerate unilateral Grow in darkness light

source

agr

wwr

Feasibility of Antisense Knockouts: Can we get the oligos in?

Untransformed moss protoplasts with no fluorescein-tagged oligo

Untransformed moss protoplasts with fluorescein-tagged oligo

Moss protoplasts transformed with fluorescien-tagged oligo

Architecture Issues & Accomplishmen

Test plant Arabidopsis thaliana as model system to identify genes involved in the gravitropic response

Optimize sample preparation for differential expression analysis

O Affymetrix Microarray analysis

Ö Identify genes whose expression increases

Architecture Issues & Accomplishment

 Establish *Physcomitrella patens* model sys to determine function of genes
propagation and maintenance
protoplast isolation, transformation, and regeneration

Collaborative agreements with two sources moss gene databases

Assemble molecular tools for gene knock-or CONA and genomic libraries two types of vectors

What's Next?

Near Future:

Increase repetitions for microarray analysis to confirm differential gene expression

Construct replacement and knock-out vector using available genomic and cDNA sequer

Generate transformed moss and score for phenotype

The Future: 2002-2020

 Introduce additional environmer conditions into architecture
space-flown plant material

- Expand collaborations with Affymetrix and AVI Biopharma to develop remote technologies
- Adapt architecture to accommodate additional plant systems as data and technologies evolve
- Work with engineers to optimize architecture for space flight/habitat