

Nanoscience and Quantum Information Science in the Army

Dr. Henry Everitt Physics Division U.S. Army Research Office

919-549-4369 Everitt@aro.arl.army.mil

Outline


• Nanoscience

- Electronic and Photonic Band Engineering
- Chemical and Biological Agent Detection
- Nanoscience for the Soldier
- Quantum Information Science
 - **Quantum Communication**
 - Quantum Computing

Electronic and Photonic Band Engineering

Nanoscience in the Army

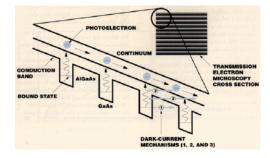
IR Sensors and Sources

Advanced Photodetectors

- Quantum Well Infrared
 Photodetectors
 - Use electronic band engineering and nanofabrication techniques
 - Multispectral IR imaging

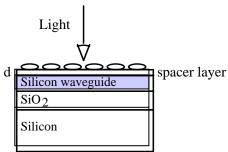
– Uncooled Infrared Detectors

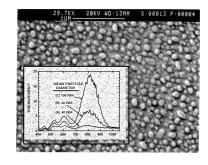
Uses nanofabrication and advanced materials

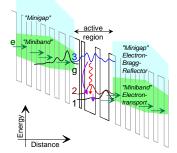

Nanoparticle-Enhanced Detection

Increase light detection by 20X

Quantum Cascade Lasers


- IR Lasers for Target Designation and Countermeasures
 - Objective: Compact, pulsed, high power 300K IR lasers
- IR Lasers for Agent Detection
 - Objective: Tunable or multiwavelength, single mode IR lasers


Quantum Well Infrared Photodetectors

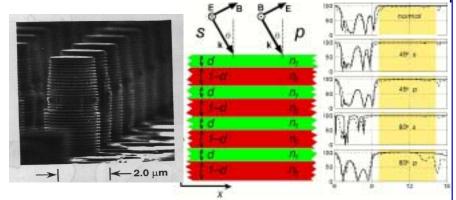


Nanoparticle Enhanced Detection

18MM

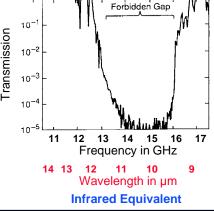
Quantum Cascade Lasers

Photonic Crystals


Photonic Crystals

- "Designer Mirrors"
 - Periodic arrangement of dielctrics and/or metals
 - Reflect radiation
 - Over band of frequencies
 - Transparent otherwise

Types


- 1 D Photonic Crystals
 - "Quarter wave stacks"
 - New omnidirectional reflectors
 - Omniguide
- 2 D Photonic Crystals
 - Used in nanolasers, optical fiber
- 3 D Photonic Crystals
 - Reflect radiation
 - From all directions
 - From all polarizations

1D Photonic Crystals John Joannopoulos, MIT

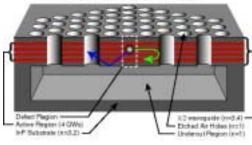
3D Photonic Crystal *Eli Yablonovitch, UCLA*

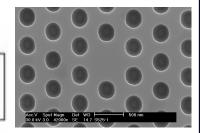
Photonics

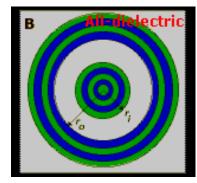
Lasers

Smallest possible laser cavity

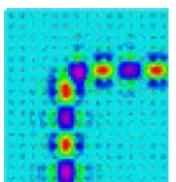
- Thin, 2D photonic crystal
- Low Threshold


Light Emitting Diodes

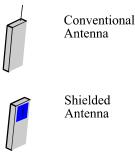

- Improved emission efficiency
- Improved collimation


• Waveguide

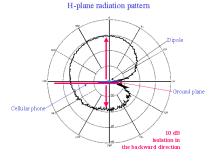
- Omniguide fiber and coax
- Photonic crystal fiber
- Integrated Photonics
 - Optical routing, filtering, and processing on a chip
- Laser Eye/Sensor Protection
 - Enhanced nonlinearities for optical limiting

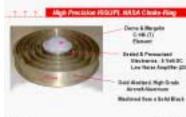

Total Internal Pathection (TIR) Distributed Bragg Reflection (DBR)


Antennas


Soldier Antenna Issues

- Proliferation
- Vulnerability
- Power consumption
- **High Impedance Ground** Plane
 - **Metallic Photonic Crystal**
 - Antenna ground plane
 - Conformal
 - Efficient
 - Commercial application
 - Cordless telephones
 - Wireless LANs and PANs
 - Military application
 - GPS
 - Advanced Radar


High Impedance Ground Plane


Improved Cordless Telephone Antenna

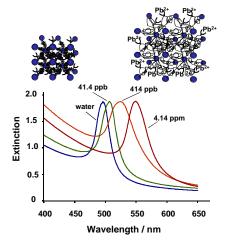
Shielded Antenna

Sub-meter resolution, **Jam-resistant GPS**

Chemical and Biological Agent Detection

Nanoscience in the Army

Chemical Agent Detection Sanford Asher, Univ. of Pittsburgh



Point Detection

- Need
 - Detect water-borne agent
- Problem
 - Sensitivity & durability
- Solution
 - Photonic crystal-based colorimetric detection
 - Self-assembled colloidal crystalline array
 - Attach receptors to colloids
 - Chelation recognition group
 - Enzymes
 - Agent causes photonic crystal to change size/color
 - Results
 - Lead detector to 40 ppb
 - In-vivo glucose monitor

Lead Detection

Glucose Detection

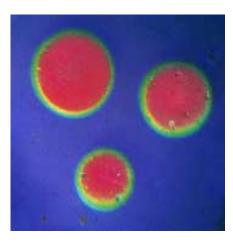


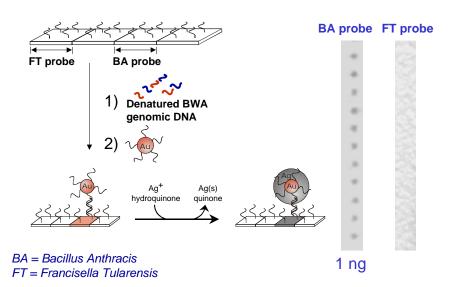
Fig. 1 Concept for glucose sensi for tear fluid and for implants. The diffracted defines the glucose con

Biological Agent Detection

Chad Mirkin, Northwestern Univ.

- Point Detection
 - Need
 - Simple, fast, selective
 - Problem
 - Amplification requires PCR
- Solution
 - Nanoparticle-based colorimetric detection
 - Attach DNA to Au nanoparticles
 - Agent provides linking DNA
 - Ag amplification of signal

– Results


- Anthrax Detected
 - 30 nucleotide region of a 141mer PCR product (*blue dot*)
- Sensitive and selective

 - Detect single mismatch
- Simpler and cheaper
 - DNA detection without PCR

Biological Integrated Detection System

Colorimetric Detection of Anthrax

Nanoscience for the Soldier

Nanoscience in the Army

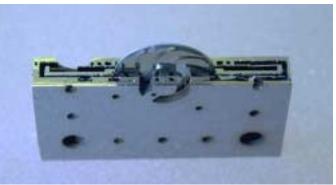
Materials and Textiles

High Strength, Ultralightweight Materials

- Ballistic protection
- Lighten carriage, shelters, packaging, small arms
- Nano ≠ lightweight
- Adaptive, Multi-function Materials
 - Chameleon skin
 - Interactive clothing
 - Eye/sensor protection
 - Energy harvesting
 - Water recovery
 - Flexible, robust packaging

Reduce the Soldier's Load

Power and Cooling


- Fuel Cells
- **Batteries**
- Micro-Turbines
- Supplemental Power Sources
 - Photovoltaics & Thermo-PVs
 - Thermoelectrics
 - Piezoelectrics for Energy Harvesting
- Cooling
 - Vapor Compression
 - Thermoelectrics
 - Evaporative

Fuel Cells

Army Research

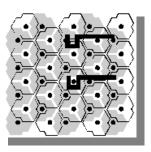
Micro-Turbines

Displays, Detectors, and Antennas

- Displays
 - Eye, Face, Sleeve, NV
- Detectors
 - Sensor fusion at focal plane
 - Wide angle and spectral coverage
 - Polarization and coherence sensitivity

Antennas

- Conformal, Low signature
- Broadband / Multiband
- Electronically reconfigurable
- Low power consumption


Uncooled Thermal, Integrated Fire Control, Target Tracker & Laser Steering

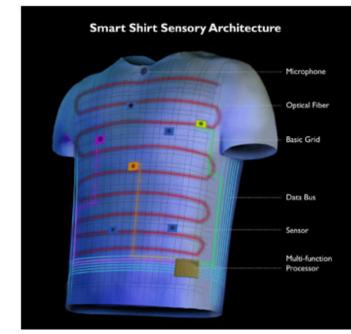
Face-covering Display

Miniature Antennas on High Impedance Ground Plane

Soldier Status Monitoring and Modeling

Smart

T-Shirt



- Monitor Soldier Status
- Predict Performance
- Enhance Performance
 - Molecular internal computer
 - Sensory and mechanical enhancement
 - Active water reclamation

Minimize Casualties

- Local area monitoring
- Clinical lab and pharmacy on the soldier
- Regeneration/self healing
- Communications

Institute for Soldier Nanotechnologies

Technical

- Emphasis on nano-materials research for protection
 - Soldier protection from
 - -Ballistics
 - -Sensory attack
 - -Chem/bio agents
 - Passively cool & insulate
 - Environmental adaptability
 - Biomedical monitoring

Practical solutions

- Integrated solution suite
 - -Rugged & synergistic
 - -Compatible with sensors, comm, and power sources
- World-class foundry of nanomaterials synthesis

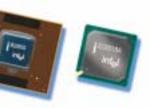
Programmatic

- Single university host
 - A "Mecca" of innovation
 - —\$10M/yr, 6.1 UARC, > 5 yrs
 - Dedicated facility
 - -Cost & resource sharing
 - Industrial partner(s)
 - Integrate research solutions
 - -Cost sharing required
 - -Many commercial spin-offs
 - Army 6.2 funding likely
 - More information
 - http://www.aro.army.mil
 - Solicitation open now
 - -Proposals due Jan. 3
 - —Winner announced Apr. '02

Quantum Information Science

Quantum Information Science in the Army

Nanoelectronics


Moore's Law

 Device sizes halve every 3 years

US technological advantage is

due in part to Moore's law

- and the second s
 - Pentium IV feature sizes 150 nm

Problem for Army

- By Moore's law, devices should reach atomic scale by 2025
 - Quantum effects will end Moore's law in 10-15 years
- US will lose technological advantage over adversaries soon after Moore's law ends

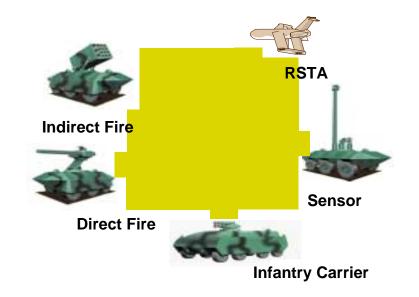
transistors 100,000,000 Pentium 8 4 Processor Pentium® III Processor MOORE'S LAW 10,000,000 Pentium® II Processo Pentium[®] Processor 486[™] DX Processo 1.000.000 386TM Processo 286 100.000 8086 10.000 8080 8008 400/ 1000 1970 1975 1980 1985 1990 2000

Hawk Technology from 50's

Patriot Technology from 70's

Information Age

Digitization of the Battlefield


Major emphasis of the Army

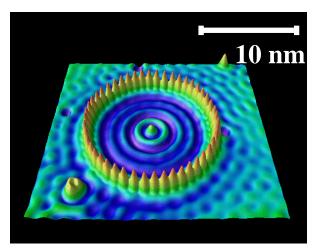
- Increase situational awareness
- Coordinate fire
- Exploit rapid bandwidth growth

Problems for the Army

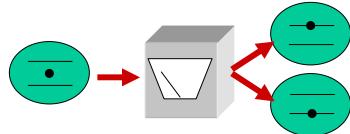
- Mobile platforms
 - Moving "cells"
 - Co-site interference
 - Free space vs line-of-sight
- Vulnerability to attack
 - Nodal nature very vulnerable
 - Virulent viruses and worms
- Public key encryption
 - Very successful
 - Intercepted messages take a long time to decipher

Quantum Information Science

Quantum Mechanics


- ... is weird!
 - Particles act like waves
 - Particles tunnel through "impenetrable" barriers
 - Particles can be in two states at once
 - Entangled particles are correlated at all times

Quantum Info. Science


- Quantum computers
 - Solve problems classical computers can't
- Quantum communication
 - Security guaranteed by quantum mechanics


Electron Waves

Army Research

Superposition and Measurement

Quantum Communications

Quantum Information Science in the Army

Quantum Cryptography

Quantum Key Generation

How it works

Step 1: Alice and Bob start. Polarization entangled photon pairs are generated.

poter

Step 2: Alice sets key. Alice measures polarization of **one entangled photon**. Result of measurement is **key**.

Step 3: Bob reads key. Alice tells Bob what measurement she made. Bob gets key.

Step 4: Message sent.

Alice encodes message and sends it to Bob through open channels. Bob decodes message.

Cryptographic keys

- Q entanglement allows random key to be shared by two users
- Encoded message sent through open channels
- Working systems exist now
 - >40 km in fiber
 - ~1 km in free space
 - Earth-to-satellite system being developed at LANL

Security

- QM:
 - Key is unbreakable: it cannot be copied!
- Eavesdropper would destroy key by trying to read it.

Quantum Communication

Quantum Teleportation

- Quantum entanglement can be used to teleport message
- Quantum teleportation proven!
 - Demonstrated in 3 labs in '98.
 - Army/DARPA initiative to develop Q network underway.

Security

- Message never travels between Alice and Bob
 - A need not know where B is
- Alice sends activation signal to receiver (selected availability)
 - Alice's copy destroyed when teleported

Quantum Teleportation

How it works

Step 1: Alice and Bob start. Polarization entangled photon pairs are generated.

Step 2: Alice sends message. Alice entangles message photon with one entangled photon.

Step 3: Bob receives message. Alice's message is destroyed as it is teleported to Bob on second entangled photon.

Step 4: Bob reads message Alice tells Bob how to measure second entangled photon to read message.

Science Fiction vs Science Fact

Superluminal Effects

Matter Teleportation

Los Alamos Quantum Cryptography System

Quantum Teleportation Experiment

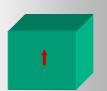
Quantum Memory

Coherence Transfer

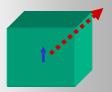
 To store quantum information, it must be transformed from one form (easily transmitted) to another (well isolated)

Quantum Memory

- Required for long range and random access Q comm.
 - 100 km requires 1ms storage
 - Nuclear spin T₂ ~ hours
 - Secure or long range comm requires 1 day 1 yr storage
- Enables tactical and strategic Q teleportation for secure comm.


How it works

Step 1: Information received. One photon of **entanglement** pair is received and ready for storage.



Step 2: Information stored. Entanglement transferred from photon to, say, a nuclear spin.

Step 3: Information saved. Coherence maintained naturally and/or through Q error correction.

Step 4: Information retrieved. Entanglement transferred from spin to photon for immediate use.

Quantum Error Correction

Q Measurement

- Q states are fragile, error prone
- Measuring a Q state destroys the Q information

Q Error Correction

- Errors can be corrected without looking at Q state
 - Errors detected using redundant storage and comparative measurement
 - Errors corrected using conditional logic and flips
- Error correction proven, but not enough to extend T₂ yet

How it works

Vulnerable storage Quantum state represented simply as **superposition**. Bit flip creates **error**.

a|0>+b|1>

a|1>+b|0>

Step 1: Redundant storage Encode **Qbit** in state of **3 Qbits**

a|000>+b|111>

Step 2: Bit flip error occurs.

a|100>+b|011>

Step 3: Error detected.Qbits compared to each other,2 at a time, for discrepancies.

a|100>+b|011>

Step 4: Error corrected. Comparative measurments reveal error on Qbit 1; Qbit flipped. a|000>+b|111>

Quantum Error Correction

Quantum Logic

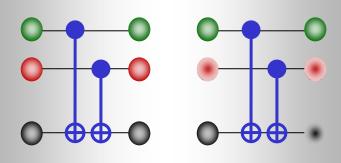
- Whether target bit is flipped depends on control bit
 - Control:0, Target: unflipped
 - Control:1, Target: flippped

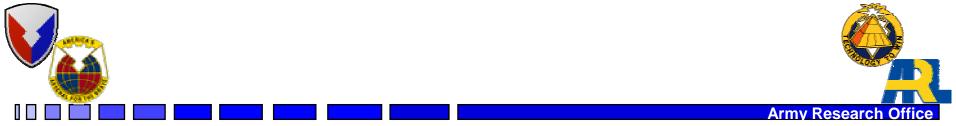
- "Controlled-NOT"

- For comparison or conditional manipulation of Qbits
- Universal Q gate

Quantum logic demonstrated in atoms

- Solid state demos in < 3 yrs
- Used for quantum repeaters
- Key to quantum computation


How it works


Controlled Not Target Qbit not flipped if **control Qbit** is 0.

Army Research

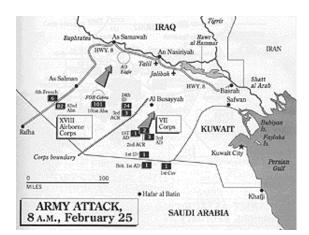
Target Qbit flipped if **control Qbit** is 1.

Collective Measurement Qbits A and B are compared using two C-NOTs and a third "ancilla" bit

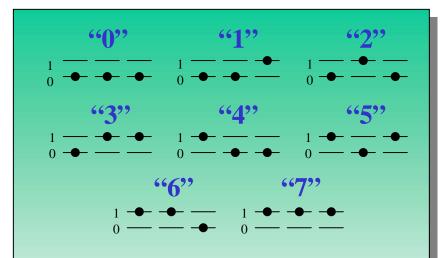
Quantum Computing

Quantum Information Science in the Army

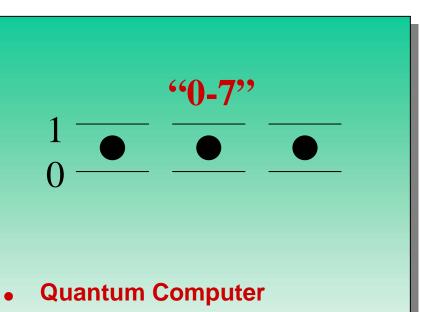
Why should we build a Quantum Computer?


Code Breaking

Resource Optimization



Wargaming, Logistics


How a Quantum Computer Works

Classical Computer

- Classical bits must be either 0 or 1.
- N bits represent any number [0, 2^N-1].
- Loop over all numbers in 2^N operations.

- Superposition allows Qbits to be between 0 and 1.
- N Qbits represent all of [0, 2^N-1] simultaneously.
- Loop over all numbers in 1 operation.

Quantum Computation

Shor's Code-breaking Algorithm

 How fast can you factor a number?

- Difficulty grows exponentially with number of digits
- Q computer advantage
 - Code-breaking can be done in minutes, not millennia
- Grover's Search Algorithm

- How quickly can you find a needle in a haystack?
 - Difficulty grows exponentially with number of items (N)
- Q computer advantage
 - Search 10⁶ items 500X faster

- How public key cryptography works
 - Multiplying two prime numbers is easy
 - 23 x 47 = ?
 - Factoring a number into its two prime cofactors is hard
 - 1961 = ? x ?
 - If N-digit key can be factored, increase N to increase security
- Classical Search
 - Sequentially try all N possibilities
 - Average search takes
 - N/2 steps
- Quantum Search
 - Simultaneously try all N possibilities
 - Refining process reveals answer
 - Average search takes
 - N^{1/2} steps

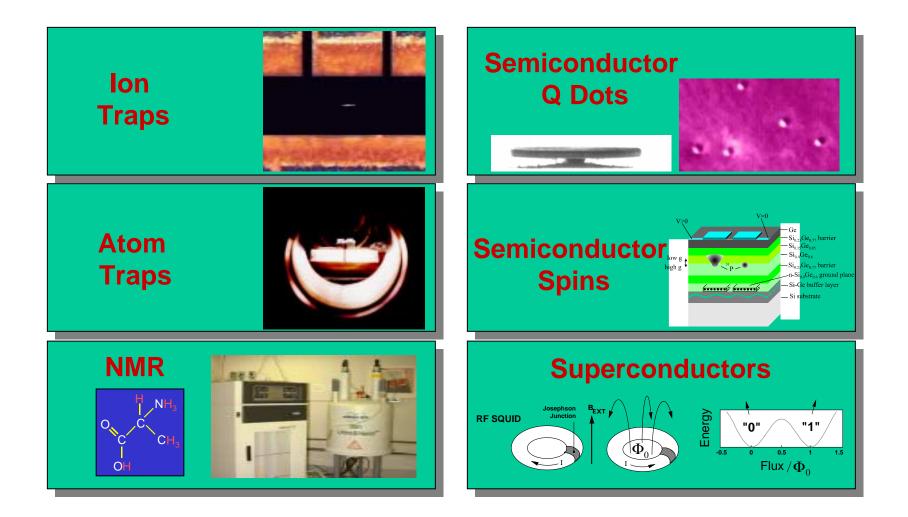
Why is it hard to build a quantum computer?

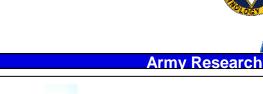
- Quantum states are fragile.
 - Noise causes errors, and state preparation is imprecise.
 - Quantum error correction will help.
- Few algorithms exist.
 - Readout of quantum states yields probabilistic answer.

• Seven qubit quantum computers are operating now.

 Researchers may need 20 years to build a QC that will solve important problems (>1000 qubits).

"Where a calculator on the Eniac is equipped with 18000 vacuum tubes and weighs 30 tons, computers in the future may have only 1000 tubes and weigh only 1 1/2 tons"

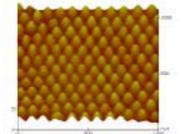

- Popular Mechanics, March 1949



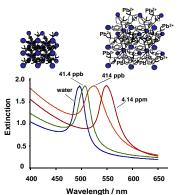
Physical Implementations

Army Research Office

Summary


Nanotechnology

- Photonic Band Engineering
 - Compact photonics
 - Efficient antennas
- Chemical and Biological Agent Detection
- Soldier Nanoscience
 - Advanced Uniform & Devices
 - Survivability & Sustainability


Quantum Information

- Quantum Communication
 - Secure communication
- Quantum Computing
 - Computing after Moore's law
 - Code breaking

