

Autonomous Self-Extending Machines for Accelerating Space Exploration

NIAC CP 01-02 Phase I

Hod Lipson, Evan Malone Cornell University

Motivation

- Robotic exploration has a long cycle time
 - Better propulsion
- Mission goals are inflexible
 - Design more complex robot
- Failure is catastrophic
 - Make more stringent reliability testing

 \rightarrow Vicious circle of cost and complexity

- Remote autonomous fabrication of complete functional systems
 - Design after launch (shorter cycle)
 - Less commitment (more flexibility)
 - Task specific robots (less complex)
 - Repair and recycle (reliability less critical)

Prior concepts

- Self replicating lunar factories
 - It more efficient to send information in preference to matter
 - Ambitious future missions can be greatly shortened through remote factories
 - Self-extending facilities can have much more flexibility

Advanced Automation for Space Missions, Robert A. Freitas, Jr. and William P. Gilbreath, editors.

Our concept

- Fabrication system that is
 - Compact
 - Fully autonomous
 - Can fabricate fully functional systems
 - Can build systems larger than itself
 - Can build repair / extend itself
- High gain fabrication system: SFF

SFF: Two architectures


- Comprehensive
 - Can make "anything"
 - Has every conceivable fabrication method
 - Catch: Shifts the cost and reliability to SFF
- Minimal
 - Has a minimal spanning base of materials
 - Cannot make all things, but can achieve any functionality
 - Catch: Requires re-parsing of design in terms of available capabilities

Computation Synthesis L Example: A possible minimal architecture

- Articulated arm SFF
 - structure, actuation, sensing, power, control, recycling
 - Assembly
- Multiple identical arms cooperate
- Redundancy
- Self repair

ORNIF

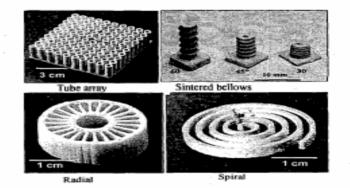
Summary of proposal

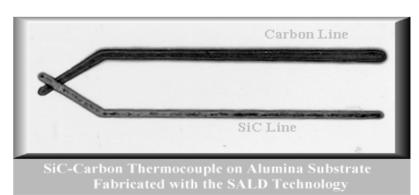
- Analyze missions requirements
- Consider a variety of destinations
- Survey available and foreseeable SFF technologies
- 1. Provide roadmap to alternative architectures
- 2. Evaluate architecture through limited implementation

Background on SFF

- Introduction to Solid Freeform Fabrication
- State of Solid Freeform Fabrication Today
 - Materials
 - Processes
 - Products
 - Markets
 - Developmental trends

Commercial SFF Processes


- Fused Deposition Modeling (FDM)
- Laminated Object Modeling (LOM)
- Stereo Lithography (SLA)
- Selective Laser Sintering (SLS)
- 3-D Printing / Multijet Modeling
- Laser Direct Metal Deposition (DMD / LENS)

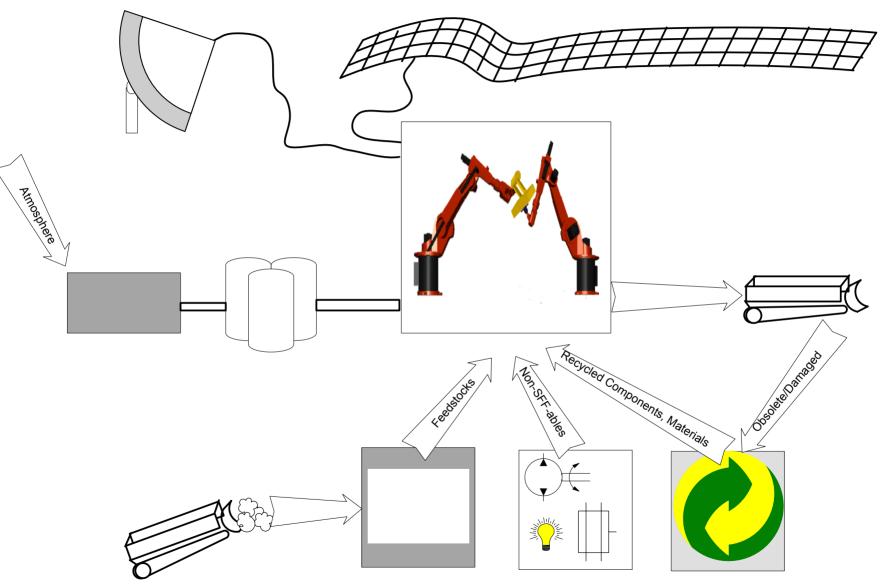


Research in SFF Processes

- Piezo actuators / sensors via LOM, SLS, FDC/FDMM, including electrodes (Rutgers)
- Fabrication of SiC / C thermocouples on Al₂O₃ ceramic, and "welding" (CVD) of ceramic via SALD (U.Conn.)
- Universality by CMU/Stanford SDM
- Passive circuit elements by laser processed sol-gel materials (Sciperio)
- DMD of on-demand spare parts in space
- FDM in zero-g (Vomit Comet)
- Focused Solar Sintering / OW
- Electron Beam SFF

Future of SFF in Missions

- Near-term, near Earth:
 - Spares on demand / inventory reduction for ISS too easy (for NIAC!) and already underway
- Mid-term, Moon, Mars:
 - Repair / extension of planetary landers / rovers,
 - Preparation of facilities / resources for manned mission
- Long-term, Outer planets, beyond:
 - Very distant scientific missions
 - Essential component of indefinite duration robotic mission / self-replicating robotic ecosystem



Mission Requirements

- What do these missions require of a fabrication system?
 - Produce Functional Components / Functional Systems
 - Compact size, low mass
 - Energy efficient
 - Large functional gain / small set of inputs
 - Simple, robust, and safe system
 - Tailored for use of *in situ* resources and products of ISRU and recycling
 - Fully automated, high yield process

Example: Architecture for MARS

Two thrusts of development

#1: Universality of the fabrication process

- Commercial development of SFF processes for "mass customization"
- What is not likely to be achieved by commercial efforts?
 - Process integration, compaction (too many proprietary, no motivation)
 - Basis sets of materials / ISRU focus
 - Production of fully functional systems in SFF style
 - 100% automation

Two Thrusts of Development

#2: New design paradigms: "Design for ..."

- Solid freeform fabrication of fully functional systems (different "components", multi-materials, wild geometry)
- Use of In situ resource feedstocks
- Highly constrained material selection
- Automated recycling / reuse
- Automated assembly / disassembly
- Automated extension / replication

Design Process for Fabricator Mission Specification

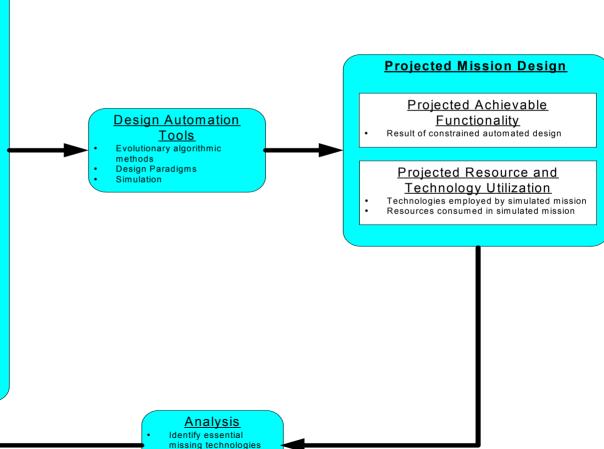
Mission Functionality Model

 Specification of functionality desired as decision tree - depending on time, discovery, etc.

Resources Model

- Expected In situ raw materials
- Expected energy sources (solar,etc.)
- Expected temperatures, pressures, radiation, etc.
- Earth-originating resources, components, etc.
- Earth-based computational resources
- Mission Earth-originating mass limitation

Recycling Technology Model


- Mapping from set of input feedstocks
 (including power) to set of output products
- Intrinsic properties of recycling systems

Manufacturing Technology Model

- Mapping from set of input feedstocks to set of output products
- Intrinsic properties of manufacturing systems

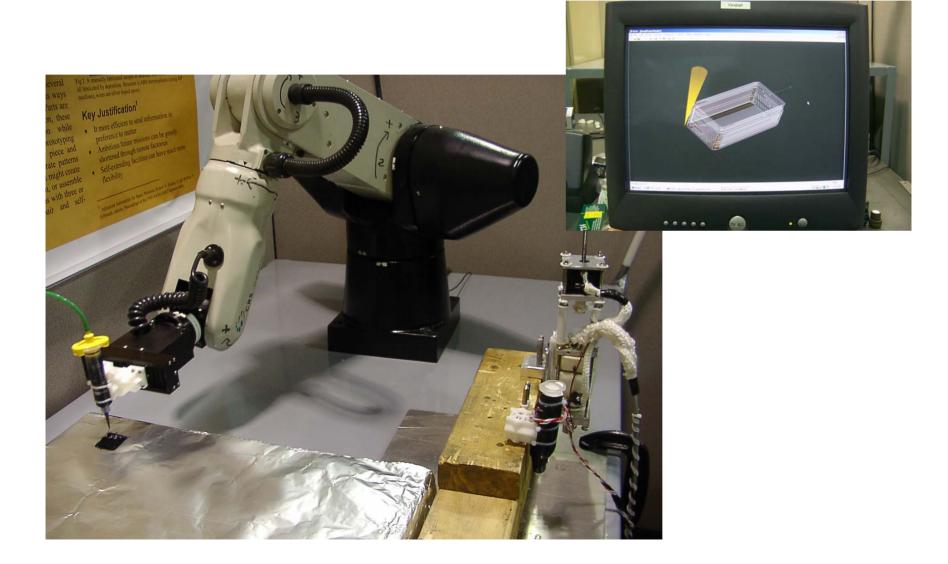
ISRU Technology Model

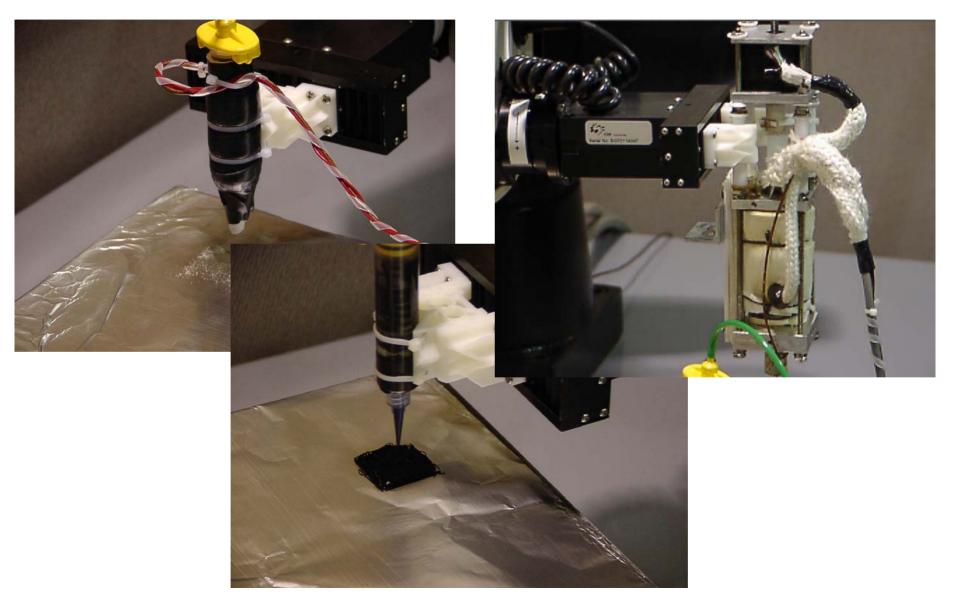
- Mapping from set of input raw materials to set
 of output materials
- Intrinsic properties of ISRU systems

Identify binding mission constraints

Technology Evaluation Platform

- Small scale, 6 axis industrial robot arm
- Multiple tools
 - Linear motor driven hot extruder for thermoplastics (polypropylene)
 - Pneumatic dispenser for conductive grease, silicone RTV elastomer
 - Hot pneumatic dispenser for low-melt alloy
- Automatic part "slicing" and path planning software




Progress

- Automatic tool changing
- Tool control
 - Multiple tools means many processes to refine and control
 - Using OOP to simplify interface
 - Hardware is very heterogeneous
- Path following: planar raster paths for now
- All the pieces are working together!

System

Dispensers

Results

System in Action

Near Term Goals

- SFF Actuators
 - Electroactive Polymer Actuators
 - Extruded solenoid
- Power storage
 - Printable Zinc-air battery
- Controls / Electronics
 - Mechanical switches
 - Resistors
 - Capacitors
- Build minimal functional mobile robot!

Conclusion / Recommendation

- Solutions foreseeable for structures, articulation, actuation, conduction
- Key Challenges
 - Develop SFF power storage, control logic
 - Integrate basis set of processes into compact system
 - Develop design paradigms for SFF, complete functional systems
- Our role and plan
 - Seek functional universality
 - 100% automation
 - Fabricate entire functional robot