THE BLACKLIGHT ROCKET ENGINE

A PHASE I STUDY FUNDED BY THE NASA INSTITUTE FOR ADVANCED CONCEPTS

ANTHONY J. MARCHESE
PETER M. JANSSON
JOHN L. SCHMALZEL

COLLEGE OF ENGINEERING
ROWAN UNIVERSITY
GLASSBORO, NJ 08028

http://engineering.rowan.edu/~marchese
The BlackLight Rocket Engine

Overview of Presentation

- Background on H₂ mixed gas plasmas
- Objectives of the Phase I study
- Evaluation of previous data and new experiments on H₂ mixed gas plasmas
- Thruster hardware design and development
- Experimental approach for thruster performance testing
- Test firing of BLPT and BLMPT thrusters
- Ongoing and future work

BLPT Thruster in Test Configuration
BACKGROUND

EXPERIMENTAL DATA ON HIGH ENERGY MIXED GAS H\textsubscript{2} PLASMA SYSTEMS

For the past decade, researchers have reported unique spectroscopic results for mixed gas hydrogen plasmas generated in:

- **Glow discharge systems** (Kuraica and Konjevic, 1992; Videnovic, et al., 1996)
- **RF discharge systems** (Djurovic and Roberts, 1993; Radovanov, et al., 1995)
- **Microwave systems** (Hollander and Wertheimer, 1994)

In these experiments, researchers have measured:

- Excessive Doppler line broadening of H emission lines
- Peculiar non-Boltzmann population of excited states.

The hydrogen line broadening in these studies was attributed to acceleration of hydrogen ions in the vicinity of the cathode and subsequent emission as it picks up an electron near the cathode.
BACKGROUND

THE BLACKLIGHT PROCESS

More recently, the following data have been published by BlackLight Power reporting similar phenomena under different conditions:

- Preferential Doppler line broadening of atomic hydrogen emission spectra (Mills and Ray, 2002).
- Inverted populations of hydrogen Balmer series in microwave hydrogen gas mixture plasmas (Mills, Ray and Mayo, 2002).
- Novel vacuum ultraviolet (VUV) vibration spectra of hydrogen mixture plasmas (Mills, He, Echezuria, Dhandapani and Ray, 2002).
- Water bath calorimetry experiments showing increased heat generation in certain gas mixtures (Mills, Ray, Dhandapani, Nansteel, Mayo, et al., 2002).
The BlackLight Rocket Engine

Objectives of the Phase I Study

The objectives of the Phase I study were as follows:

- Perform experiments to evaluate previously published data on energetic mixed gas H_2 plasmas.
- Develop bench scale proof-of-concept BlackLight Plasma Thruster (BLPT) and BlackLight Microwave Plasma Thruster (BLMPT) hardware.
- Develop experimental apparatus for measuring specific impulse (I_{sp}) and overall thruster efficiency (η).
- Measure specific impulse (I_{sp}) and overall thruster efficiency (η) when operating the BLPT and/or BLMPT thrusters.
An Evenson microwave discharge cavity (Fehsenfeld, et al. 1964) was used to excite water vapor plasmas at various pressures.

Preferential Doppler line broadening was observed in atomic hydrogen emission spectra. Results suggest extremely high random translational velocity of H atoms within the plasma.

No broadening was observed in oxygen spectra.
EVALUATION OF EXPERIMENTAL DATA

INVERSION OF LINE INTENSITIES IN HYDROGEN BALMER SERIES

Using the same apparatus used for the line broadening experiments, an inversion of line intensities of the hydrogen Balmer series were observed in H$_2$O plasmas.

These results suggest the presence of a previously unobserved pumping mechanism.
A McPherson Model 248/310G 4° grazing incidence VUV spectrometer was used to measure vacuum ultraviolet emission (25 to 90 nm) for helium and hydrogen/helium microwave plasmas.

The He/H₂ microwave plasmas show novel “vibrational’ peaks in the VUV.
An Evenson cavity and quartz plasma tube were installed into a stainless steel housing and immersed in a water bath calorimeter (accuracy of +/- 1 W).

For a forward microwave power of 70 W and reflected power of 16 W, control gas plasmas consistently transfer < 40 W into the water while H₂/catalyst mixtures transfer 55 to 62 W.
THE BLACKLIGHT PROCESS

THEORETICAL EXPLANATION OF DATA SUGGESTED BY MILLS, et al. (2000).

Bohr (1913) and later Schrödinger (1927) developed theories that predict the observed energy levels of the electron in a hydrogen atom according to the following equation:

\[E_n = -\frac{e^2}{n^2 8\pi \varepsilon_0 a_o} = -\frac{13.598 \text{eV}}{n^2} \]

\(n = 1, 2, 3, 4, \ldots \)

where \(a_o \) is the ground state radius of the hydrogen atom, \(\varepsilon_0 \) the permittivity constant and \(n \) the principal quantum number.

Mills (2000) suggests that the energetic hydrogen plasmas can be explained theoretically based on an alternative solution to the Schrödinger equation that permits hydrogen atoms to collapse into increased binding energy states with binding energies of:

\[E_B = \frac{13.6 \text{eV}}{n^2} \]

\(n = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{p} \)
PROPULSION POTENTIAL FOR ENERGETIC MIXED GAS PLASMA

CONVERT RANDOM TRANSLATIONAL ENERGY TO DIRECTED ENERGY

H_α low random velocity

H_α high random velocity

H_α high directed velocity
Thruster Hardware Development

Conceptual Designs for First-Generation BlackLight Thruster

A review of the propulsion literature and comparison with the conditions under which the BlackLight Process is said to occur yielded the following promising conceptual designs BlackLight thrusters:

<table>
<thead>
<tr>
<th>BLP Thermal Propellant Jet</th>
<th>Microwave ArcJet Derivative (Micci, 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ArcJet Derivative (Curran, 1988)</th>
<th>BlackLight Plasma Thruster</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLP Thermal Propellant Jet

- Propellant Inlet
- $P_i \gg 1 \text{ atm}$
- $P_c >> 1 \text{ atm}$
- $P_a \rightarrow 0$
- $H_2 + \text{Catalyst}$

Microwave ArcJet Derivative

- Propellant Inlet
- $P_i \gg 1 \text{ atm}$
- $P_c = 40 \text{ Pa}$
- $P_a \rightarrow 0$
- $H_2 + \text{Catalyst}$

ArcJet Derivative

- Propellant Inlet
- $P_i \gg 1 \text{ atm}$
- $P_c \rightarrow 0$
- $H_2 + \text{Catalyst}$

BlackLight Plasma Thruster

- Propellant Inlet
- $P_i \gg 1 \text{ atm}$
- $P_c \rightarrow 0$
- $H_2 + \text{Catalyst}$
A H₂/Ne compound hollow cathode gas cell was chosen as a starting point to design the first iteration BlackLight Plasma Thruster.
Thermodynamic calculations were performed using the NASA CEC code (Gordon and McBride, 1973) to parametrically design the supersonic nozzle.

Required throat diameter as a function of flow rate and plasma temperature

![Graph showing throat diameter vs. plasma temperature for different flow rates.](image-url)
THRUSTER HARDWARE FABRICATION

BLACKLIGHT PLASMA THRUSTER (BLPT) FABRICATION

The BLPT hardware was manufactured in-house using a CNC turning center and CNC milling center. The diverging section of the 20:1 and 100:1 nozzles were machined using a wire EDM.
THRUSTER HARDWARE FABRICATION

BLACKLIGHT PLASMA THRUSTER (BLPT) FABRICATION

The thruster hardware was manufactured to adapt to a 13.25” CF vacuum flange for installation into the vacuum chamber for exhaust velocity measurement.

Welded flange
THERMAL CHARACTERIZATION TESTING

BLACKLIGHT PLASMA THRUSTER (BLPT)

To better understand the thermal characteristics of the BlackLight process so that it can be optimized for the BLPT, a Ne/H₂ gas cell was instrumented with 12 high temperature type K thermocouples.

Schematic diagram of Ne/H₂ gas cell showing thermocouple locations

Photo of Ne/H₂ gas cell instrumented for thermal testing
THERMAL CHARACTERIZATION TESTING

BLACKLIGHT PLASMA THRUSTER (BLPT)

The experimental system consisted of a H₂/Ne gas feed system, vacuum pump, kiln, Xantrex XFR600-2 (0-600V, 0-2A) DC power supply and PC-based data acquisition system.

Experimental setup for thermal characterization testing

Tube bundle and cell wall temperature vs. input power

![Graph showing temperature vs. input power for tube bundle and cell wall](image)
THRUSTER HARDWARE DEVELOPMENT

BLACKLIGHT MICROWAVE PLASMA THRUSTER (BLMPT)

In parallel with the BLPT, a BlackLight Microwave Plasma Thruster (BLMPT) was designed based on recent developments using H$_2$/catalyst and H$_2$O microwave plasmas.

Schematic diagram of BlackLight Microwave Plasma Thruster

Photo of prototype microwave thruster showing quartz nozzle

0.040” throat nozzle
THRUSTER HARDWARE DEVELOPMENT

BLACKLIGHT H₂O MICROWAVE PLASMA THRUSTER (BLMPT)

To determine required throat diameter a series of experiments were conducted with varying throat diameter (0.025”, 0.050”, 0.100”, 0.200”).

0.025” Throat Diameter

0.100” Throat Diameter
Thruster Proof-of-Concept Testing

Development of Apparatus for BLPT and BLMPT Performance Tests

A vacuum test chamber apparatus has been developed to characterize specific impulse \((I_{sp}) \) and overall thruster efficiency \((\eta) \).

Exhaust velocity \((v_e) \) will be measured using a Doppler shift technique developed by Micci and co-workers (1999).

\[
v_e = c \frac{\Delta v}{v}
\]

\[
I_{sp} = \frac{v_e}{g_o}
\]

\[
\eta = \frac{m v_e^2}{2 \dot{W}}
\]
Thruster Proof-of-Concept Testing

Development of Apparatus for BLPT and BLMPT Performance Tests

The thruster test firing will be performed in a vacuum chamber manufactured by MDC. The chamber is fitted with a CryoTorr 8 cryopump and can achieve vacuum levels of 1.0 e-7 Torr.

Doppler shift will be measured using the JY Horiba 1250M visible spectrometer, which has a wavelength resolution of 0.006 nm.
THRUSTER PROOF-OF-CONCEPT TESTING

EXPERIMENTAL SETUP FOR BLPT AND BLMPT PERFORMANCE TESTS

Vacuum Chamber
Propellant Feed System
Cryotorr Pump
Thruster Chamber Pressure Gauge
Cryotorr Compressor
Mass Flow Controllers
Vacuum Pressure Gauge
BLPT DC Power Supply
Roughing Pump

ROWAN UNIVERSITY
NIAC
Thruster Proof-of-Concept Testing

Validation of Doppler Shift Exhaust Velocity Measurement

- A NASA Lewis 1 kW class ArcJet (Curran, et al., 1990) was obtained on loan from NASA Glenn Research Center.

- The ArcJet, which can achieve an exhaust velocity of approximately 10,000 m/s, will be used to test our Doppler shift technique.
THRUSTER PROOF-OF-CONCEPT TESTING

INTEGRATION OF BLPT HARDWARE INTO VACUUM CHAMBER
THRUSTER PROOF-OF-CONCEPT TESTING

BLPT THRUSTER FIRING IN VACUUM CHAMBER

Test Firing of BLPT Thruster

Exhaust Plasma

QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture.
THRUSTER PROOF-OF-CONCEPT TESTING

BLACKLIGHT H₂O MICROWAVE THRUSTER FIRING
THRUSTER PROOF-OF-CONCEPT TESTING

BLACKLIGHT H₂O MICROWAVE THRUSTER FIRING

Doppler shift measurement using JY Horiba 1250 M

Tuning and positioning the Evenson Microwave Cavity

QuickTime™ and a Motion JPEG OpenDML decompressor are needed to see this picture.
THE BLACKLIGHT ROCKET ENGINE

SUMMARY AND ONGOING WORK

- Experimental results on the mixed gas hydrogen plasmas are reproducible.
- BLPT hardware complete and Doppler shift measurement is underway.
- BLMPT testing is being conducted, but additional hardware development required to install Evenson cavity inside vacuum chamber.
- More work needs to be conducted to identify alternative means to convert random energy of H atoms to directed kinetic energy.
- Potential applications for micropropulsion.
ACKNOWLEDGEMENTS

The investigators wish to acknowledge the NASA Institute for Advanced Concepts for the CP 01-02 Phase 1 Grant. Much of the work presented herein was performed by Rowan students Mike Muhlbaier, Mike Resciniti ‘02, Jennifer Demetrio, Tom Smith and Kevin Garrison and machinist Chuck Linderman. The authors also wish to acknowledge William Good, Mark Nansteel, Bob Mayo, Paresh Ray and Randell Mills at BlackLight Power, Inc. for consultation and access to their laboratory and spectroscopic equipment and Michael Micci at Penn State for consultation on exhaust plume measurements.
REFERENCES

