PROTEIN BASED NANO MACHINES FOR SPACE APPLICATIONS

Dr. Constantinos Mavroidis, Associate Professor Department of Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey

NIAC Phase I Grant

THE TEAM

Dr. C. Mavroidis

Associate Professor Mechanical Engineering, Rutgers University

Dr. B. Yurke Researcher, Bell Laboratories, Lucent Technologies Inc.

Dr. M. Yarmush

Chair, Biomedical Engineering, Rutgers University

Mr. Atul Dubey Graduate Student Rutgers University

Dr. M. S. Tomassone

Assistant Professor, Biochemical Engineering Rutgers University

Ms. Angela Thornton Graduate Student Rutgers University

Dr. F. Papadimitrakopoulos

Associate Professor Department of Chemistry University of Connecticut

Mr. Kevin Nikitczuk Undergraduate Student Rutgers University 2

OUR VISION

To Develop Protein Based Nano Machines and Robots

- Novel
- Biological
- Multi-Degree of Freedom
- Apply Forces
- Manipulate Objects
- Move From Nano to Macro
- Lightweight / Efficient
- Self-Assembling
- Self-Reproducing

APPLICATIONS

Outer Space and Planetary Missions
Colonization
Workstations
Manufacturing
Military
Medical

APPLICATIONS

Bio-Nano-Robot Repairing a Damaged Blood Cell

0-10 YEARS: DEVELOPMENT OF BIO NANO COMPONENTS

DNA

VPL Motor

Bacteriorhodopsin

DNA – Structural Member, Power Source

VPL – Protein Based Actuator

Bacteriorhodopsin, HSF – Nano Sensors

MACRO-NANO EQUIVALENCE

Structural Elements

Metal, Plastic Polymer

DNA, Nanotubes

Power Sources

Electric Motors, Pneumatic Actuators, Smart Materials, Batteries, etc.

ATPase, VPL Motor, DNA

MACRO-NANO EQUIVALENCE

Compliance Devices

Springs

Transmission Elements

Various Types of Gears, Belts, Chains etc.

DNA Double Crossover Molecules

β-Sheets

MACRO-NANO EQUIVALENCE

Sensors

Light sensors, force sensors, position sensors, temperature sensors Rhodopsin, Heat Shock Factor

Actuated Joints

Revolute, Prismatic, Spherical Joints etc. DNA Nanodevices, Nanojoints

10-20 YRS: NANOROBOTIC ASSEMBLIES

ATPase Motor Propelled
 Structure – Nanotubes
 Legs – Helical Proteins

Vision of a Nano Robot

20-30 YRS – SELF SUSTAINMENT AND REPLICATION

Self Replication
Sustainment
Swarm Intelligence
Controllability

30-50 YRS – DEPLOYMENT FOR SPACE COLONIZATION

Space Colonization
Non-living Robots
Bio Mimetic
Remote Sensing
Signal Transmission

Courtesy: http://members.cox.net/kableguy/bryceworks/

12

SPECIFIC AIMS FOR PHASE I

Identify Proteins for Use in Nanoscale Mechanisms Develop Concepts for Bio Nano Machine components **Develop Dynamic Models and Realistic Simulations** Perform a Series of Biomolecular Experiments Assembly and Interface Nano Machine Components

VPL MOTOR CONCEPT

Viral Membrane PeptidespH Dependent

VPL ACTUATED PLATFORMS

Viral Protein Linear Motor Actuated Parallel Platforms with Controllable Motion

VPL OUTPUT MULTIPLICATION

VPL Motors in Parallel – Force Multiplication

VPL Motors in Series – Displacement Multiplication

BIOSENSOR SYSTEM

HSF Protein in Organisms
Responds to Stimuli – Trimerises
Binds to DNA
Color Change
Signal Transmission

MULTI- DOF DEVICES

3 VPL Actuators
Nanotubes
DNA Joints
Response to pH Changes

COMPUTATIONAL STUDIES Model Reversible Folding of VPL Motor Protein Estimate Forces, Displacements etc. Through Energy Software Usage - CHARMM Input – Structure Files in .pdb Format Output – Simulated Energy and Displacements Microsecond Modeling – Assumptions, Targeted MD Parallel Processing Facilities at CAIP (Teal) Comparison with Experimental Observations

EXPERIMENTAL WORK

- Peptide Selection
- Protein Expression
 Protein Purification
 Protein Conformation as a Function of pH
 Calculate Force Expended upon Extension
 Reversibility
 Different Sequence Different Designs

WEBPAGE

http://bionano.rutgers.edu

others in action, in that case visiting the Multimedia pages is recommended. Maybe you would like to see whom it is here at Rutgers that's working on the project, in that case then you should visit the Team page. I hope you enjoy the site and we wish you a pleasant learning experience..

OUTREACH ACTIVITIES

- High School Students in Research
- Minority Students in Research
- Undergraduate Students Employed
- Technology Transfer
- International and Industry Collaboration
- Colloquiums, Symposia and Journal Clubs
- Interdepartmental Course on Bio Nano Technology

ACKNOWLEDGEMENTS

NASA Institute of Advanced Concepts (NIAC)
 SROA Program and Rutgers University, NJ
 NSF Nanomanufacturing Program

