

NIAC Phase I Fellows Meeting

October 23-24, 2002

NIAC Headquarters
Atlanta, Georgia

Highlights of Activities Since June 2002 Annual Meeting

Changed NIAC Logo

- Released CP 02-01 Phase II Call for Proposals in July with a due date of December 2, 2002.
- Released CP 02-02 Phase I Call for Proposals on September 26, 2002 with a due date of February 17, 2003.
- Space Elevator Workshop August 12-13, 2002.
- Robert Michelson, GTRI received Pirelli Prize for Entomopter.
- USRA/ANSER/NIAC Booth at AIAA World Space Congress.
- Numerous publicity and outreach activities.
- Several NIAC concepts recognized in NASA long range plans, NEXT.

Wednesday AM, October 23, 2002

8:00am – 8:30am Registration

8:30am – 9:00am Welcome – NIAC Status Report and Plans for the Future

Robert A. Cassanova, NIAC Director

9:00am – 10:30am Keynote Speaker

Robert Michelson, Georgia Tech 21st Century Aerial Robotics

10:30am – 10:45am **Break**

10:45am – 12:15pm NIAC Status Reports

(30 mins.) Anthony Colozza

Ohio Aerospace Institute

Solid State Aircraft

(30 mins.) Constantinos Mavroidis

Rutgers University

Protein Based Nano-Machines for Space Applications

(30 mins.) Hod Lipson

Cornell University

Autonomous Self-Extending Machines for Accelerating Space

Exploration

12:15pm - 1:30pm Lunch (buffet in Atrium)

Keynote Speaker: Professor Robert Michelson

Past President, Association for Unmanned Vehicles Systems International

Principal Research Engineer, Aerospace, Transportation, & Advanced Systems Laboratory, Georgia Tech Research Institute

Adjunct Associate Professor, School of Aerospace Engineering at the Georgia Institute of Technology

Invited Lecturer on Micro Air Vehicle technology at both the von Karman Institute for Fluid Dynamics and the Royal Military Academy in Brussels.

Creator and Organizer of the annual International Aerial Robotics Competitions.

Robert Michelson, Designer of the Entomopter, Receives Pirelli Prize

The "Entomopter" advanced concept that is sponsored by NIAC has just received international recognition! Rob Michelson, who is a Professor and Principal Research Engineer at Georgia Tech, has received a prestigious award – *the Pirelli Prize* – for his work on the Entomopter. NIAC is funding a Phase II contract with the Ohio Aerospace Institute (OAI) for development of the Entomopter system, and Rob Michelson at the Georgia Tech Research Institute leads the development of the Entomopter flying vehicle through a subcontract with OAI.

The link to the announcement is: http://www.pirelliaward.com/web/index.html.

Here's a quote from the Pirelli Prize announcement:

"After evaluating more than 1,000 entries, the International Jury has assigned the various awards for this edition, subdivided into two main categories: "educational" and "environment." The 25,000 Euros worth of Top Pirelli Prize was won by Professor Robert Michelson, Georgia Institute of Technology, USA. His work was awarded as the best product coming from any school, college, university or research center and simulates a mission to Mars, actually planned by NASA for the period 2013-2017, performed by Michelson's candidate – the Entomopter – a revolutionary, flying/crawling machine fueled by a new chemical energy named reciprocating chemical muscle."

Professor Michelson has additional information about the Entomopter on his website at: http://avdil.gtri.gatech.edu/RCM/Entomopter/EntomopterProject.html, which features the Entomopter in a simulated mission to Mars.

Wednesday AM, October 23, 2002

8:00am – 8:30am Registration

8:30am - 9:00am Welcome - NIAC Status Report and Plans for the Future

Robert A. Cassanova, NIAC Director

9:00am – 10:30am Keynote Speaker

Robert Michelson, Georgia Tech

21st Century Aerial Robotics

10:30am – 10:45am **Break**

10:45am – 12:15pm NIAC Status Reports

(30 mins.) Anthony Colozza

Ohio Aerospace Institute

Solid State Aircraft

(30 mins.) Constantinos Mavroidis

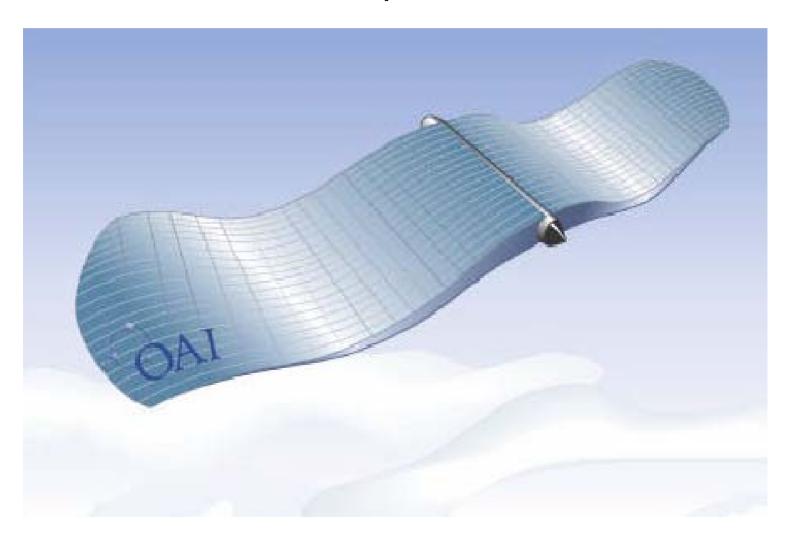
Rutgers University

Protein Based Nano-Machines for Space Applications

(30 mins.) Hod Lipson

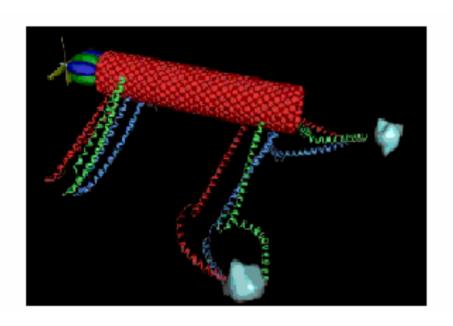
Cornell University

Autonomous Self-Extending Machines for Accelerating Space


Exploration

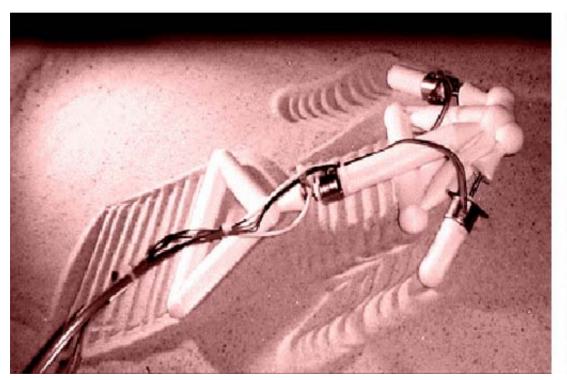
12:15pm - 1:30pm Lunch (buffet in Atrium)

Solid State Aircraft


Anthony Colozza Ohio Aerospace Institute

Protein-Based Nano-Machines for Space Applications

Constantinos Mavroidis Rutgers University



Autonomous Self-Extending Machines for Accelerating Space Exploration

Hod Lipson Cornell University

NIAC Fellows Meeting Wednesday PM, October 23, 2002

1:30pm - 3:00pm	NIAC Status Reports
(30 mins.)	Nilanjan Sarkar Vanderbilt University A Novel Interface System for Seamlessly Integrating Human-Robot Cooperative Activities in Space
(30 mins.)	David Wettergreen Carnegie Mellon University Planetary Circumnavigation
(30 mins.)	Alexey A. Pankine Global Aerospace Corporation Planetary Science from Directed Aerial Robot Explorers
3:00pm – 3:30pm	Break
3:30pm – 4:30pm	NIAC Status Reports
(30 mins.)	Elizabeth McCormack Bryn Mawr College Investigation of the Feasibility of Laser Trapped Mirrors in Space
(30 mins.)	Seigo Ohi Howard University The Hematopoietic Stem Cell Therapy for Exploration of Space
4:30pm - 5:00pm	Discussion
5:00pm - 7:00pm	Reception (Atrium)

A Novel Interface System for Seamlessly Integrating Human-Robot Cooperative Activities in Space

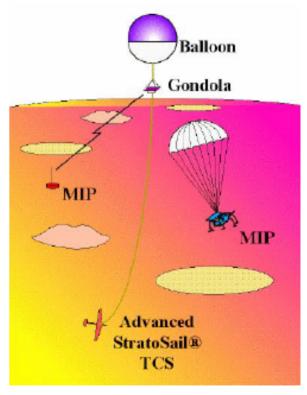
Nilanjan Sarkar Vanderbilt University

Planetaray Circumnavigation: A Concept for Surface Exploration of the Inner Planets

David Wettergreen and William Whittaker Carnegie Mellon University

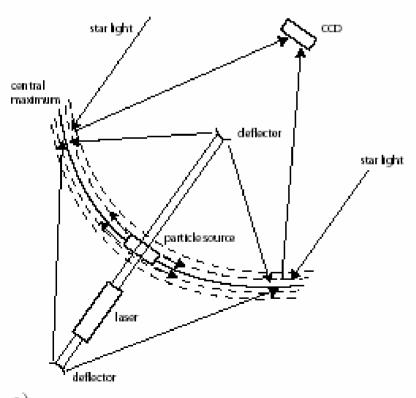
Moon: Circumnavigation of the polar regions could follow the terminator in a region of moderate temperature to encounter rills, exposed bedrock, and ground ice trapped in perpetually shadowed craters.

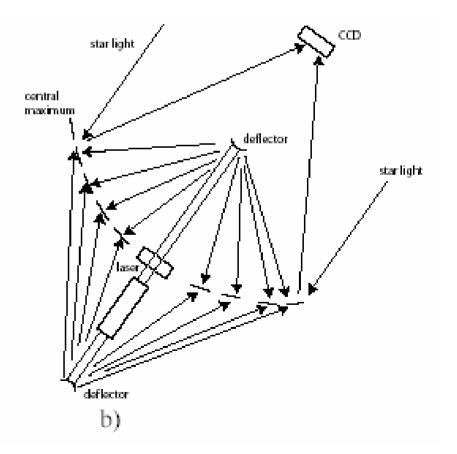
Mars: Axial inclination similar to Earth provides extended periods of sunlight in the polar regions where the investigation of annual water ice and evidence of life could proceed before crossing the equatorial volcanic plateaus and alluvial features enroute to the other polar circle.


Venus: Intense heat and pressure are challenges in circumnavigation. The period of rotation (retrograde) is slow to effort investigation of atmospherics, tectonics and corrosive erosion in what may be the least understood but most Earth-like of planets.

Planetary Science from Directed Aerial Robot Explorers

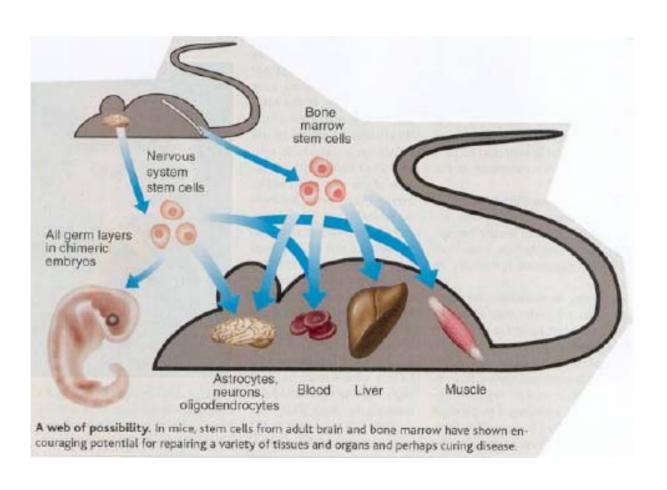
Alexey A. Pankine Global Aerospace Corporation


Wednesday PM, October 23, 2002


1:30pm - 3:00pm	NIAC Status Reports
(30 mins.)	Nilanjan Sarkar Vanderbilt University A Novel Interface System for Seamlessly Integrating Human-Robot Cooperative Activities in Space
(30 mins.)	David Wettergreen Carnegie Mellon University Planetary Circumnavigation
(30 mins.)	Alexey A. Pankine Global Aerospace Corporation Planetary Science from Directed Aerial Robot Explorers
3:00pm - 3:30pm	Break
3:30pm – 4:30pm	NIAC Status Reports
(30 mins.)	Elizabeth McCormack Bryn Mawr College Investigation of the Feasibility of Laser Trapped Mirrors in Space
(30 mins.)	Seigo Ohi Howard University The Hematopoietic Stem Cell Therapy for Exploration of Space
4:30pm - 5:00pm	Discussion
5:00pm - 7:00pm	Reception (Atrium)

Investigation of the Feasibility of Laser Trapped Mirrors in Space

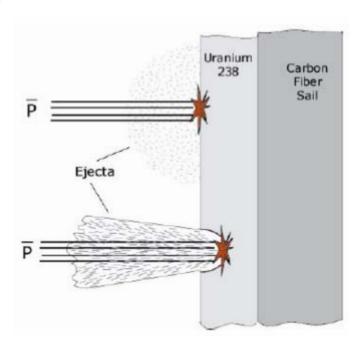
Elizabeth McCormack Bryn Mawr College



Hematopoietic Stem Cell (HSC) Therapy for Exploration of Space

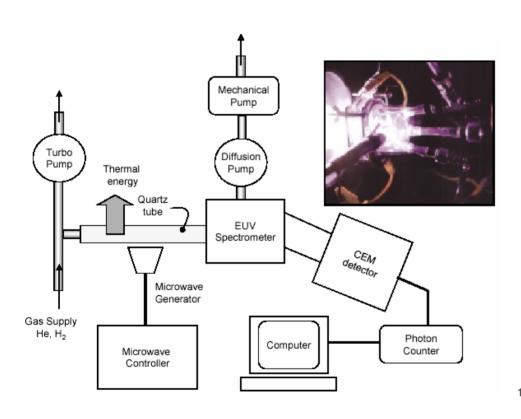
Seigo Ohi Howard University and Hospital

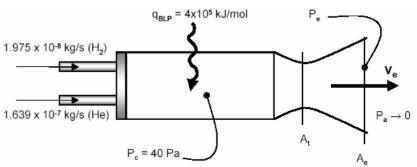
Thursday AM, October 24, 2002


Welcome 9:00am Robert A. Cassanova, NIAC Director **NIAC Status Reports** 9:00am -10:30am Steven D. Howe (30 mins.) Hbar Technologies, LLC Antimatter Driven Sail for Deep Space Missions **Anthony J. Marchese** (30 mins.) **Rowan University** The Black Light Rocket (BLR) Engine **Joseph Carroll** (30 mins.) Tether Applications, Inc. Space Transport Development using Orbital Debris 10:30am - 10:45am **Break** 10:45am - 12:15pm **NIAC Status Reports** Narayanan M. Komerath (30 mins.) Georgia Institute of Technology Tailored Force Fields for Space-Based Construction: Key to a Space-Based Economy Organization **Parviz Soroushian** (30 mins.) **Technova Corporation** Inherently Adaptive Structural Systems A. C. Charnia (30 mins.) SpaceWorks Engineering, Inc. (SEI) Networks on the Edge of Forever: Meteor Burst (MB) Communication Networks on Mars

Antimatter Driven Sail for Deep Space Missions

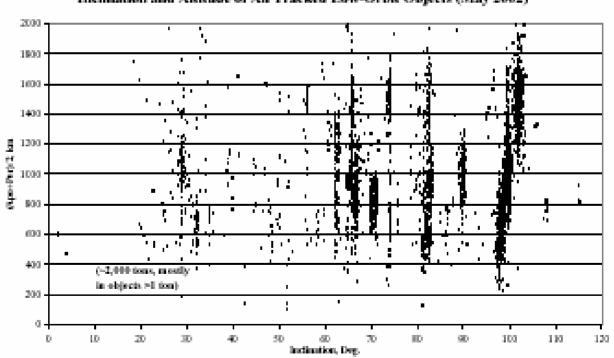
Steven D. Howe Hbar Technologies





The BlackLight Rocket (BLR) Engine

Anthony J. Marchese Rowan Univesity


Space Transport Development using Orbital Debris

Joseph Carroll Tether Applications, Inc.

Space Transport Development Using Orbital Debris

NIAC 2002 Phase I Grant to Tether Applications, Inc.

Inclination and Altitude of All Tracked Low-Orbit Objects (May 2002)

Thursday AM, October 24, 2002

9:00am Welcome

Robert A. Cassanova, NIAC Director

9:00am –10:30am NIAC Status Reports

(30 mins.) Steven D. Howe

Hbar Technologies, LLC

Antimatter Driven Sail for Deep Space Missions

(30 mins.) Anthony J. Marchese

Rowan University

The Black Light Rocket (BLR) Engine

(30 mins.) Joseph Carroll

Tether Applications, Inc.

Space Transport Development using Orbital Debris

10:30am – 10:45am **Break**

10:45am – 12:15pm NIAC Status Reports

(30 mins.) Narayanan M. Komerath

Georgia Institute of Technology

Tailored Force Fields for Space-Based Construction: Key to a Space-Based Economy Organization

(30 mins.) Parviz Soroushian

Technova Corporation

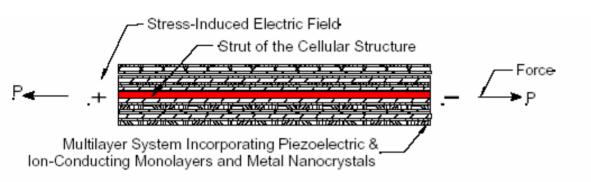
Inherently Adaptive Structural Systems

(30 mins.) A. C. Charnia

SpaceWorks Engineering, Inc. (SEI)

Networks on the Edge of Forever: Meteor Burst (MB) Communication Networks on Mars

Tailored Force Fields for Space-Based Construction


Narayanan Komerath Georgia Tech

Inherently Adaptive Structural Systems

Parviz Soroushian Technova Corporation

(a) The Strut Embodying Structural, Piezoelectric and Electrochemical Constituents

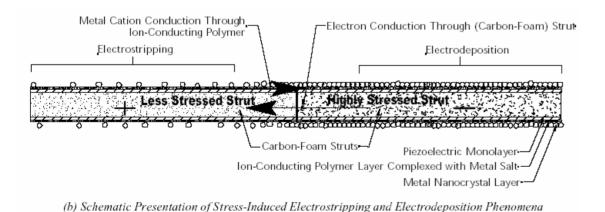


Figure 2. The Self-Adapting Hybrid Multilayer System Built Upon the Struts of An Open-Cell Structure.

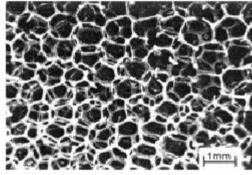


Figure 1. Open-Cell Carbon Foam.5

Networks on the Edge of Forever:Meteor Burst (MB) Communication Networks on Mars

A. C. Charania
SpaceWorks Engineering, Inc.

Thursday PM, October 24, 2002

12:15pm – 1:15pm **Lunch** (buffet in Atrium)

1:15pm — 2:45pm Keynote Speaker

Seth Shostak

Search for Extraterrestrial Intelligence (SETI) Institute

The Search for Cosmic Company

2:45pm — 3:00pm **Break**

3:00pm – 4:00pm NIAC Status Reports

(30 mins.) **John Manobianco**

ENSCO, Inc.

Global Environmental MEMS Sensors (GEMS): A Revolutionary Observing System

for the 21st Century

(30 mins.) David W. Miller

Massachusetts Institute of Technology

Electromagnetic Formation Flight (EMFF)

4:00pm – 4:30pm **Discussion**

4:30pm Adjourn

Keynote Speaker: Dr. Seth Shostak

Senior Astronomer for the SETI Institute

Distinguished Lecturer for the American Institute for Aeronautics and Astronautics

Author of the popular book, Sharing the Universe

Produced a series of lectures on tape and video on the subject of SETI. For more information visit the <u>Teaching Company website</u>.

Thursday PM, October 24, 2002

12:15pm – 1:15pm **Lunch** (buffet in Atrium)

1:15pm — 2:45pm Keynote Speaker

Seth Shostak

Search for Extraterrestrial Intelligence (SETI) Institute

The Search for Cosmic Company

2:45pm — 3:00pm Break

3:00pm – 4:00pm NIAC Status Reports

(30 mins.) **John Manobianco**

ENSCO, Inc.

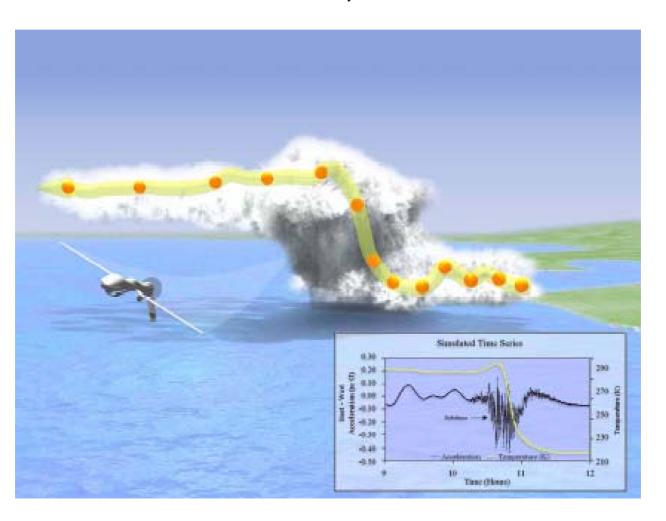
Global Environmental MEMS Sensors (GEMS): A Revolutionary Observing System

for the 21st Century

(30 mins.) David W. Miller

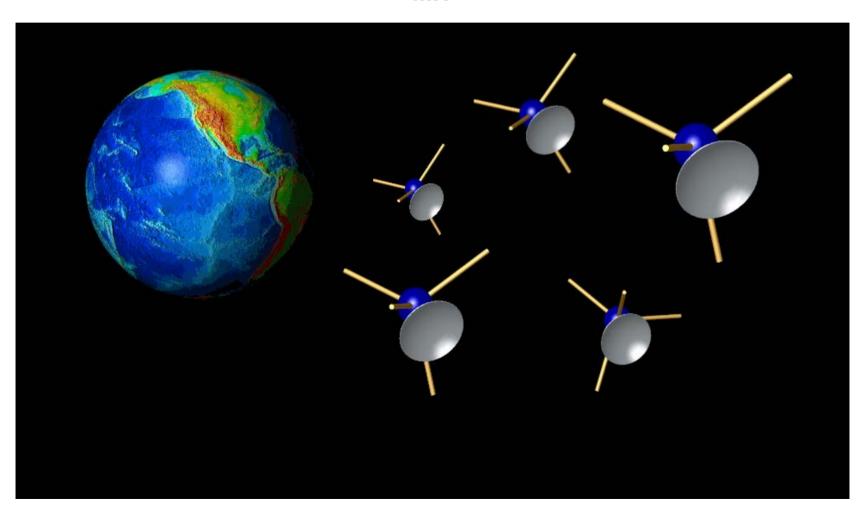
Massachusetts Institute of Technology

Electromagnetic Formation Flight (EMFF)


4:00pm - 4:30pm **Discussion**

4:30pm Adjourn

Global Environmental MEMS Sensors (GEMS): A Revolutionary Observing System for the 21st Century


John Manobianco ENSCO, Inc

Electromagnetic Formation Flight (EMFF)

David Miller Raymond Sedwick MIT

