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1.0  BACKGROUND

In this feasibility study, ORBITEC has conceptualized systems and an evolving architecture for
producing and utilizing Mars-based ISRU propellant combinations from the atmosphere to
support ground and flight propulsion and power systems that would be part of Mars exploration
and colonization.  Ground transport systems included: automated unmanned roving vehicles,
personal vehicles, two-person unpressurized rovers, manned pressurized transport rovers, and
larger cargo transports.  Flight vehicles include: Mars sample return vehicles, unmanned and
manned surface-to-surface “ballistic hoppers”, surface-to-orbit vehicles, interplanetary transport
vehicles, powered balloons, winged aerocraft, single person rocket backpacks, and single person
rocket platforms.  Auxiliary power systems include: Brayton turbines and fuel cells for small
Mars outposts.  The vision of these systems goes from the initial human exploration missions out
to 50 years beyond the early exploration initiatives.

In this Phase I study, we accomplished a preliminary systems scoping study which provides the
approach and direction to fully assess the benefits of an ISRU approach (e.g., carbon/oxygen,
carbon monoxide/oxygen, methane/oxygen or hydrogen/oxygen) compared to one of using all
Earth-supplied propellants.  There is no question that for the cost-effective human exploration of
Mars, we will need to use insitu resources that are available on Mars.  The real question is what
propellants do we use in what applications to achieve the best economic benefit for humanity.

Probably the most cost-effective and easiest use of Martian resources is the atmosphere (95%
CO2).  The CO2 can be easily processed and converted to carbon monoxide or carbon and
oxygen.  Water vapor is also present in the Mars atmosphere in small proportion; soil-based
water (especially in the polar regions) may likely be in much greater abundance.  With the
availability of C, CO, O2, and H2O through processing the atmosphere, excellent propellants can
be made (SC/LOX, SCO/LOX, LCO/LOX, LCH4/LOX, SC2H2/LOX, LH2/SOX, LH2/LOX,
H2O2/CH3OH, and etc).  For this study period, we have focused upon a 50-year period beyond
the initial manned Mars exploration activity.  We have assumed that three different levels of
activity and missions that require the use of propellants and fuels are possible, as driven by
various reasons (continued presence/research/exploration, terraforming program, colonization,
etc.).  Therefore, we are defining what we call “low”, “medium” and “high” traffic models.  To
define the use of propellants/fuels, we define the vehicles that would use them.  ORBITEC's
overall approach in this Phase I effort was to develop a feasible study methodology/approach
such that a credible detailed study could be conducted in Phase II that would provide reasonable
answers that would provide knowledgeable guidance to NASA technology development of
systems that use the ISRU propellants as well as the definition of the ISRU processing systems
themselves.
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2.0  ADVANCED CONCEPT DESCRIPTION

To enable cost-effective, in situ production and uses of Mars atmospheric-derived oxidizers (O2,
N2O, N2O4,  H2O2) and fuels (CO, C, C2H2, C2H4, CH4, C3H8 CH3OH, H2, etc.) and to guide
technology development and unique hardware development, detailed advanced concept
development and system analysis efforts are required.  The use of these propellants in
applications involve rocket propulsion, ground-based rovers that use turbine engines, and electric
power generation systems.  It is believed that by using the baseline C/O system with the addition
of either Earth supplied hydrogen or Mars atmospheric derived hydrogen, in the proper fuel form
(CO solid, C solid, C2H2 solid, CH4 solid, etc.) that significant economic dividends can be
achieved for the HEDS enterprise.

The production of oxygen and carbon monoxide through solid state electrolysis appears to be
well in hand by K. R. Sridhar of the University of Arizona.  Hardware is now being prepared to
fly to Mars for an ISRU demonstration.  ORBITEC’s innovative work on this revolutionary
concept, and the recent successful hot firing demonstrations of advanced cryogenic solid hybrid
rocket engines, including: solid CO/GOX, solid H2/GOX, solid O2/GH2, solid CH4/GOX, and
solid C2H2/GOX, provide the motivation to analyze, test and assess the potential of using the
Mars atmosphere for ISRU propellant.
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Figure 1.  Solid CO/LOX Theoretical Isp vs O/F Ratio for e=100, Pc- 500 psia

The beauty of our SCO/LOX propellant concept is that CO gas can be directly and quickly
frozen to a solid hybrid fuel grain below the triple point temperature (68 K) by using sub-cooled
LOX (with the low pressure of the Mars atmosphere (4.5 to 11.4 mm Hg, this is very easy-@
11.4 mm LOX will be at 63 K, and @6 mm LOX will be at 60 K) as the freezing fluid and
oxidizer in a cryogenic hybrid engine.  The heavy tank associated with LCO goes away and a
much lighter propulsion system can now be developed that will be the most simple and low cost
approach.  Ideal performance using the NASA/GRC CEA performance code is shown in Figure
1 for an expansion ratio of 100 and a chamber pressure of 500 psia.

Additionally, and in collaboration with Dr. Tom Sullivan (NASA/JSC), we have good indication
that solid carbon, with perhaps some small amount of hydrogen, could result in an ignitable,
good burning carbon hybrid fuel grain for ISRU applications on Mars.  Ideal performance for
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carbon/LOX at e=100, and Pc=500 at differing hydrogen loadings in the carbon is indicated in
Figure 2.  This performance is very promising.
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Figure 2.  Solid C/LOX Theoretical Isp vs O/F Ratio for 100, Pc- 500 psia and Varying H
Concentrations

According to ideal performance analysis, C2H2 burning with O2 at an O/F ratio of 1.4, a chamber
pressure of 300 psia, with a nozzle expansion ratio of 100:1, the maximum theoretical Isp exceeds
405 seconds.  Figure 3 shows maximum theoretical Isp levels for SC2H2/O2 as a function of O/F
ratio for 100:1 expansion to vacuum and for optimum expansion to atmosphere at sea level.
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Figure 3.  Theoretical Maximum Isp for SC2H2/GOX

The results of this proposed effort are applicable to future NASA Solar System unmanned and
manned exploration missions to Mars.  This activity is a part of NASA’s overall strategic plan.
Mars-produced fuels and oxidizers will enhance and/or enable a variety of Mars exploration
missions by providing a very cost-effective supply of propellants.  The technology requires
demonstration before propellants are selected.  The establishment of practical feasibility could
result absolutely huge savings to our exploration programs.

As an examples of the rocket-based vehicles that would be studied here, Figure 4 provides a
summary of the vehicle systems that would be evaluated and analyzed in this proposed effort.
The first concept would be for Mars sample return missions, the second for automated surface
“hopper”/orbital vehicle, and the third, a large manned “hopper” /orbital vehicle.
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Figure 4.  Solid CO/O2-Based Hybrid Rocket Flight Vehicle Concepts

For the small vehicle, an expendable propellant production system would be outside of the
vehicle shell and would include: a solar energy power generation system, an atmospheric intake
system, with filters; a regenerative solid oxide fuel cell/separator system; an intermediate CO gas
reservoir; an oxygen liquifer subsystem; control system, and etc.

For the medium unmanned and large manned vehicles, all of the processing systems would be
contained within or on (retractable solar arrays) the flight vehicle.  Part of our analysis in this
proposed effort will be to develop reasonable mass breakdown projections such that the benefit
assessment can be conducted.  We believe that the results may show a tremendous cost/benefit
for the C/O architecture.

During the Phase I effort, we developed an overall advanced concepts study approach that will
be exercised in Phase II to determine the winning ISRU propellant combinations for the most
economical program.  We have defined the assumptions, and study guidelines and have
developed the foundation for a successful Phase II effort.  Our overall study approach is outlined
in Figure 18, Page 22.
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3.0 STUDY RESULTS AND FINDINGS

The sections that follow provide the results of the Phase I research effort, including:  (1)
introduction, (2) literature survey, (3) ORBITEC’s SCO/GOX hybrid rocket engine firing, (4)
results of ORBITEC's SCH4/GOX hybrid rocket engine firings data, (5) system requirements
definition for the architecture study, (6) Mars mission/traffic model and cost model development,
(7) preliminary system concept development and analysis, (8) preliminary cost-benefit analysis,
and (9) preliminary technology assessment.

3.1  Introduction

The purpose of this effort was to identify, assess and enable the cost-effective application of In
Situ production and uses of Mars atmospheric-derived propellants and to help guide the
advanced concept development, system analysis, technology development and unique hardware
development efforts of the future.  Mars-produced propellants will enhance and/or enable a
variety of Mars exploration/exploitation missions by providing a very cost-effective supply of
propellants.  The most cost-effective Martian resource is the atmosphere which is comprised of
95% CO2.  Atmospheric CO2 can be easily processed and converted to CO or C & O2.  A small
amount of H2O can be converted to H2 and O2, and N2, Ar are also available from the
atmosphere.  With these elements, there are many propellant combinations that are possible
including: SC/LOX, SCO/LOX, LCO/LOX, LCH4/LOX, SC2H2/LOX, LH2/SOX, LH2/LOX,
H2O2/CH3OH, and etc).

For this study period, we have considered a 50-year period beyond the initial manned Mars
exploration activity.  We have assumed that three different levels of activity and missions that
require the use of propellants are possible, as driven by various reasons (continued presence,
research, exploration, terraforming program, colonization, etc.).  Therefore, we are defining what
we call “low”, “medium” and “high” traffic models to define the use of propellants, we define
the vehicles that would use them.

In this Phase I study, ground transport systems have included: automated unmanned roving
vehicles, personal vehicles, two-person unpressurized rovers, manned pressurized transport
rovers, and larger cargo transports.  Flight vehicles have included: Mars sample return vehicles,
unmanned and manned surface-to-surface “ballistic hoppers”, surface-to-orbit vehicles,
interplanetary transport vehicles, powered balloons, winged aerocraft, single person rocket
backpacks, and single person rocket platforms.  Auxiliary power systems include: Brayton cycle
turbines and fuel cells for small Mars outposts.  Implementation of this ISRU-based architecture
will also greatly support logistics & base operations by providing a reliable and simple way to
store solar and nuclear generated energy.

3.2  Literature Survey

The review of the literature provided background information upon which to build the data base
for concepts and future design work and analysis in Phase II.  Items now included in our data
base include: ORBITEC work on advanced cryogenic hybrid engines, oxygen liquifaction
systems, cryogenic refrigerators, the latest in light-weight cryogenic insulation, the latest studies
by NASA JSC and JPL on Mars sample return propulsion and manned Mars propulsion systems,
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mission models for Mars base development, mission science needs, other ISRU works related to
Mars, etc.  Attention was also given to the on-going work on CO2 separation technology being
developed by Sridhar at the University of Arizona for CO, O2 and CH4 production.

Many journal articles, conference papers, detailed reports and web articles were identified and
obtained and placed in our NIAC project library.  These items were entered in a computer
database that contains the title, author name, publication date, publication source, and a brief
abstract.  All of these sources were reviewed and they will serve as a valuable reference source to
support future study activity in Phase II.  Appendix A is a Bibliography of related works and
Appendix B provides the list of references reviewed for this study.

3.3  Results of ORBITEC Experimental Work

This section briefly describes the most recent rocket engine findings that directly relate to the
wok of this program, namely, test firings of CO/GOX and OH4/GOX.

3.3.1  SCO/GOX Hybrid Rocket Firings

This section summarizes the evolutionary carbon monoxide/GOX/hybrid rocket engine hot firing
tests performed to date by ORBITEC.  These data are relevant and key to the conduct of the
advanced concepts study.

A total of six solid carbon monoxide/GOX hybrid hot firing tests have been attempted, all in the
ORBITEC Mark II engine system.  Figure 5 shows a section view of the Mark II cryogenic
hybrid engine assembly that has been used to test many cryogenic solid and gaseous propellant
combinations.  The carbon monoxide grain is deposited from the gas phase on the inner wall of
the central tube in the freezer core.  Coolant fluid, in this case liquid helium, fills the annular
coolant chamber around this central tube and chills the tube wall to enable the cryogenic
deposition.  The volume inside the central tube is referred to as the grain chamber.  When the
firing is performed after the grain formation process, oxygen injection and the ignitor torch enter
from the injector plate located at the head end of the grain chamber.  The surrounding vacuum
chamber provides thermal insulation to enable efficient cryogenic operation.  For reference, the
diameter of the grain chamber is 5.08 cm (2.00 inches).
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Figure 5.  Mark II Engine Assembly

Table 1 summarizes the results of these tests in tabular form, and Figure 6 presents a composite
pressure trace/time summarizing all successful hot firing tests.
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Table 1.  Solid Carbon Monoxide/GOX Hybrid Firing Tests in ORBITEC’s Mark II
Engine

CO-H001 CO-H002 CO-H003 CO-H004 CO-H005 CO-H006

Date: 29-Jan-98 2-Aug-99 3-Aug-99 4-Aug-99 12-Nov-99 23-Nov-99
Grain Mass (g): 100 100 100 100 100 100
CO gas delivery: Head-end Nozzle Nozzle Nozzle Nozzle Nozzle
CO gas cooling: None LN2 bath LN2 bath LN2 bath LN2 bath LN2 bath
CO freez. press. (torr): app. 1 9 9 9 90 90

Oxygen flow (g/s): 6.0 6.0 4.0 10.0 10.0 6.0
Oxygen phase : GOX GOX GOX GOX GOX GOX
Injector diameter: Conical 0.104" 0.104" 0.104" 0.104" 0.104"
Avg. reg.rate (cm/s): 0.0576 0.0482 0.043 --- 0.0608 0.0438

Freezer coolant: LHe LHe LHe LHe LHe LHe
Duration (sec): 9.7 11.6 13 --- 9.2 12.8
Avg. O/F: 0.57 0.7 0.51 --- 0.92 0.76
Avg. Pres. (psia): 71 67 52 --- 95 55.4

Ignitor H2 Flow (g/s): 0.06 0.06 0.06 0.06 0.06 0.06
Ignitor O2 Flow(g/s): 0.24 0.24 0.24 0.24 0.24 0.24
Ignitor duration (sec): whole test 2 2 --- 2 2

C* (sec): 114 120 115 --- 119 104
C* efficiency: 83 88 85 --- 89 77
Max temp on TC 3 (K): 310 260 270 --- 300 540
Max temp on TC 3 (K): 710 720 430 --- 810 180

3.3.2  Engine-Test Operation

Many aspects of the test firings were kept constant throughout the entire test series.  All grains
were formed using liquid helium as a coolant fluid, and all were 100 grams in mass.  The
estimated grain thickness for this grain mass is 0.56 cm.  All tests employed a
hydrogen/oxygen/spark ignition system with an O/F ratio of 4 and a total mass flow rate of 0.3
grams/second.  Also, all tests used the same basic oxygen flow profile, with an accelerating ramp
for the first 0.5 seconds followed by a plateau for the remainder of the test.

The sequence timing remained virtually identical for the entire test series.  A representative
timeline is presented below.  Note that the time defined as ‘t=0’ corresponds to the start of the
main oxygen flow ramp.
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Figure 6.  Pressure Traces for All Successful Carbon Monoxide Hot Firing Tests

Time (sec) Event
-2.5 The operator initiates the firing sequence through the computer control

system.

-2.5 The gaseous helium purge valve opens, dumping a calibrated volume of
pressurized helium gas into the grain chamber to bring the pressure to one
atmosphere.

-2.2 With the chamber now at atmospheric pressure, the computer opens the
swinging door, exposing the nozzle to the atmosphere below.

-0.8 When the computer has sensed that the swinging door is completely
opened and clear of the nozzle area, the ignition sequence is started.  The
igniter hydrogen valve is opened and the spark plug is turned on.

-0.5 The igniter oxygen valve is turned on.  Several tenths of a second later,
ignition occurs in the igniter and the igniter flame enters the grain
chamber.

0.0 With the igniter flame on, the main oxygen flow valve is opened and the
ramp-up is started.  As oxygen begins entering the chamber, it encounters
the igniter flame and a fuel (CO)-rich environment, and main ignition
occurs.

0.5 The ‘command’ flow ramp of oxygen reaches the designated plateau level.
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0.6 The actual ramp catches up to the command profile.  Oxygen flow reaches
its maximum level and remains constant for the remainder of the test.

Later, after burning for approximately 9-13 seconds, the carbon monoxide grain is depleted.
Oxygen continues to flow according to the pre-programmed profile for several more seconds.
Then oxygen flow is ramped down, the main oxygen flow valve is closed, and helium gas purges
the combustion chamber of any remaining propellants.

3.3.3  Individual Test Procedures and Results

3.3.3.1  CO-H001 Hot Firing of SCO/GOX

During the grain freezing process, carbon monoxide gas was introduced from the head end of the
engine through the igniter.  A vapor pressure of approximately 1 Torr (of CO) was maintained in
the grain chamber during the freeze.  The actual test firing proceeded smoothly, with a good
ignition followed by a test that lasted approximately 10 seconds.  Figure 7 presents a pressure
trace from the test firing.
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Figure 7.  Pressure Trace – CO-H001

As Figure 6 illustrates, the chamber pressure reaches 60 psi shortly after the oxygen flow reaches
its full level.  The pressure then steadily increases for the next 6 seconds to approximately 90 psi.
The end of the test is marked by several pressure spikes and an overall drop-off in pressure.  The
igniter torch was left on for the duration of the test.  The main oxygen flow for CO-H001 was
injected into the grain chamber through a single-hole injector, 0.104” in diameter.  This same
injector was used for CO-H001 through CO-H005.

3.3.3.2  CO-H002 Hot Firing of SCO/GOX

Several modifications were made to the freezing process for this test.  One possible explanation
for the rough pressure trace seen at the top of the pressure curve in CO-H001 was that the grain
was forming asymmetrically, resulting in premature grain burn-through in one location during
the burn and a subsequent end of burn grain break-up.  Grain asymmetry could arise from a
number of causes.  One prime suspect was asymmetrical thermal input from the incoming gas
stream.  Room-temperature CO gas entering the grain chamber through the angled igniter port at
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high velocity could have warmed one area of the grain, resulting in a thin area prone to early
grain depletion of the wall of the engine.

The following changes were made to minimize the chance of grain asymmetry caused by non-
uniform convective heating.  First, the location of the gas input was changed from the igniter port
in the head end, which pointed into the chamber at an angle, to the nozzle at the aft end, which is
directed straight up the axis of the chamber.  This gave the incoming flow radial symmetry.
Second, the freezing pressure during the grain formation process was increased from
approximately 1 Torr to 9 Torr.  This was done to reduce the velocity of the incoming gas.  Last,
a liquid nitrogen pre-chill heat exchanger was installed to cool the incoming gas to
approximately 80 K before it reached the grain chamber.  This reduced the total amount of
convective warming caused by the incoming gas.  It also provided the benefit of accelerating the
freezing process by approximately 30%, reducing liquid helium usage.

For the firing, the oxygen flow rate was held at the same level as for CO-H001 (6.0 g/s).  Figure
8 presents a summary pressure trace showing both CO-H001 and CO-H002.
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Figure 8.  Pressure Trace – CO-H001 and CO-H002

As the plot illustrates, the second test had a lower pressure than the first, and a lower rise rate.
The tail-off is also different; the second test goes down in pressure more smoothly, although
there are still some prominent pressure spikes near the end.  Referring to Figure 6, it is worth
noting that CO-H002 had a higher C* efficiency than CO-H001 (88%, vs. 83%), also suggesting
a cleaner burn with less ejection of solid grain material.

The igniter torch was shut off at time=1.2 seconds for CO-H002; it was left on for the duration of
CO-H001.  It was also shut off at time=1.2 seconds for all subsequent tests.

3.3.3.3  CO-H003 Hot Firing of SCO/GOX

The grain formation procedure for this test was the same as for CO-H002.  The oxygen flow rate
was reduced from 6.0 g/s to 4.0 g/s.  Figure 9 shows a summary pressure trace showing both CO-
H002 and CO-H003.
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Figure 9.  Pressure Trace – CO-H002 and CO-H003

As Figure 9 illustrates, CO-H003 had a lower pressure and a lower pressure rise rate than CO-
H002.  In addition, CO-H003 lasted longer, both until it hit its pressure peak and until the firing
was completed.  All of these results are consistent with a lower oxygen flow rate.  CO-H003
exhibited the least pressure spiking and the flattest overall pressure trace of all the tests
performed to date.

3.3.3.4  CO-H004  Hot Firing Attempt of CO/LOX

CO-H004 was set up to increase the oxygen flow rate to 10 g/s.  However, the engine failed to
light and the test was aborted.  A close examination of the video after the test indicated that the
igniter torch failed to produce a flame, causing the test failure.  The cause of the igniter failure
has not been determined.  Possibilities include a failure in the spark generation system, a failure
to deliver hydrogen or oxygen gas, or some previously unnoticed problem with the igniter
design.  Subsequent testing with the igniter was consistently successful.

3.3.3.5  CO-H005 Hot Firing of CO/GOX

For the grain formation process in CO-H005, a Baratron gauge with a higher range (0-100 Torr)
was installed to replace the old Baratron (0-10 Torr).  This enabled the freeze process to be
conducted at an even higher pressure, 90 Torr, to bring inlet gas velocities lower.  The triple
point pressure of carbon monoxide, 116 Torr, is the upper limit for the working pressure during a
gas-phase deposition process without any liquid formation.  The oxygen flow rate was 10 g/s, the
same flow rate attempted in CO-H004.  The firing lit successfully and went to completion.
Figure 10 presents pressure traces for CO-H002, CO-H003, and CO-H005. The pressure trace for
CO-H005 exhibits a higher pressure and a higher pressure rise rate, both consistent with a higher
oxygen mass flow.  It shows relatively smooth burning for the first five seconds, followed by an
extremely rough end to the burn.  The test was completed faster than any of the preceding tests.
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Figure 10.  Pressure Trace – CO-H002, CO-H003, and CO-H005

3.3.3.6  CO-H006 Hot Firing of CO/GOX

All of the preceding tests exhibited the same overall pressure profile: a quick increase at the start,
a gradual further increase for approximately 60%-70% of the test duration, and a concluding
pressure tail-off which may or may not be marked with pressure spikes.  Also, temperature data
consistently indicated very hot temperatures near the aft end of the engine and very cold
temperatures near the head end of the engine.  These data supported the hypothesis that the most
intense burning was occurring near the aft end of the engine, suggesting that the injected oxygen
flow was jetting past the head end of the grain and burning the grain away from the bottom up.
This mode of burning would be undesirable and could possibly contribute to grain break-up;
ideally, the grain would regress evenly at the top and the bottom.

A new injector was designed with the intention of slowing down the incoming oxygen gas and
distributing it to the head end of the grain.  Figure 11 shows a section view of the engine
assembly with the new conical injector in place at the head end of the grain chamber.  The main
oxygen flow for CO-H006 was set to 6.0 grams/second, the same flow rate used in CO-H002.
Figure 12 shows the pressure traces for CO-H002 and CO-H006.  The pressure trace for CO-
H006 is generally lower than the trace for CO-H002.  This is also reflected in the relatively poor
C* efficiency for CO-H006: 77%, vs. 88% for CO-H002.  In general, CO-H006 had fewer
pressure spikes than CO-H002, although the overall profile remained quite non-uniform, a
disappointing result.  Temperature data indicated that temperatures in the head end of the grain
chamber were much warmer than normal, and temperatures in the aft end of the engine were
much cooler than normal.

Figure 13 shows a solid CO grain that has been formed in the Mark II engine just prior to it.
Figure 14 shows the bright exhaust plume of CO2 from one of the test firings.  Figure 15
provides a summary of cryogenic hybrid regression rate results for SOX/OH2, SH2/GOX,
SCH4/GOX, SCH4-Al/LOX and SC2H2/GOX.
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Figure 11.  Engine Assembly with Conical Injector
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Figure 12.  Pressure Trace – CO-H002 and CO-H006
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Figure 13.  Solid CO Grain Formed in the
Mark II Engine Prior to Firing

Figure 14.  CO Grain Firing in the Mark II
Engine
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Figure 15.  Summary of Cryogenic Hybrid Regression Rate Results

3.3.3.7  Summary of SCO/GOX Testing

This section summarizes the results from the ORBITEC hot firings of the SCO/GOX propellant.
We discovered that SCO can be easily formed in a solid grain and the grain appears structurally
sound.  There were no indications of grain slipping during burns.  SCO burns very well with
GOX; it has been one of the smoothest burning cryogenic solids that we have tested.  The
pressure change with time was primarily due to the increase in area as the CO grain regressed;
some contribution to the increase in grain temperature is also believed a contributor.  The
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optimum O/F ratio was easily achieved the first time tried.  The tests show great promise for the
SCO/LOX propellant combination for use as a Mars sample return and a wide variety of Mars
exploration applications.

3.3.4  SCH4/GOX Hybrid Rocket Firings

ORBITEC has also completed work on a project for NASA/GRC to design, build, and test a
solid methane/GOX hybrid rocket engine.  A total of 24 successful test firings were performed in
the final version of the Mark II engine; also an excellent Mars ISRU propellant candidate.  The
largest SCH4 grain fired had a mass of 120 g.  The highest steady chamber pressure attained was
240 psia, and the highest oxygen mass flow rate injected into the engine was 35 g/sec.  The tests
were planned using statistical experimental design (SED) to study the effects of varying grain
mass, oxygen flow, grain temperature, injector type, and aluminum loading.  Figure 16 shows a
series of pressure curves that illustrate the effect of varying grain size.  Figure 17 illustrates the
effect of varying oxygen flow.
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Figure 16.  Pressure Curves for SCH4/GOX Firings, Showing Effect of Varying Grain Size
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Figure 17.  Pressure Curves for SCH4/GOX Firings, Showing Effect of Varying Oxygen Flow Rate

3.4  Overall Approach for the Architecture Study

The overall approach to this architecture study is graphically displayed in Figure 18.  The first
step is to define the fuel and oxidizer scenarios that will be evaluated.  This includes selecting
fuel and oxidizer combinations, determining the planetary source of the fuel and oxidizers, and
developing processing scenarios.  At the beginning of the Phase I effort, the study focused on the
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innovative and revolutionary use of solid C and CO as fuels with LOX in both hybrid rockets
and power system applications as compared to LH2/LOX supplied from Earth.  However, the
focus of the study was broadened to also include ISRU propellants: SCH4/LOX, LCH4/LOX,
SC2H2/LOX, LH2/SOX, LH2/LOX, and other secondary derivative propellants that may have
significant storability advantages (e.g., H2O2, CH3OH).  The planetary source of each of these
fuel and oxidizer combinations must be determined before the processing scenarios are
developed.  Some of the planetary sources of the fuel and oxidizers considered in Phase I
included the atmosphere and, the regolith of the Moon (Lunar H2/O) compared with Earth-
supplied propellants.  The third part of this step is the development of the processing scenarios.
Conceptual designs of the processing hardware are required to determine estimates of system
mass and volume, development costs, recurring costs, system life, recurring requirements, and
energy requirements.
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Figure 18.  Overall Study Approach
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The next two steps of the study occur in parallel.  One is the definition of the vehicle/system
families that will utilize the propellant combinations identified in first step.  The general
categories identified during the Phase I effort are flight vehicles, ground vehicles, and auxiliary
power systems.  Each propellant combination will have its own family of vehicles that cover
these categories.  The other step is development of the mission and traffic/use models.  The
mission model outlines the potential activities that require vehicle/systems.  Many potential
missions were identified during the Phase I effort including: scientific exploration and research,
commercial exploration, terraforming, infrastructure construction, agriculture/farming,
manufacturing/industrial activities, resource mining, weather/environmental, communications
navigation services, surveying/mapping, personal transportation, package/mail delivery/package
delivery/product delivery/food delivery/goods/services/cargo, government activity/law
enforcement/emergency rescue and response, launch/space transport satellite/Earth cargo
launch/space transport, auxiliary power/emergency power, life support, waste/trash management,
health care/maintenance, and real/virtual travel market.  The traffic/use model outlines how often
these activities take place.  Four different levels of human presence on Mars were defined during
the Phase I effort.  These levels are: (1) early exploration, (2) low presence (100 permanent
inhabitants after 50 years), (3) medium presence (1,000 permanent inhabitants after 50 years)
and (4) a high presence (10,000 permanent inhabitant after 50 years).

The next step is to assign vehicles/systems to the missions based upon the traffic/use model.  The
mission activity will help to determine the vehicle/system type that is used and the traffic/use
model will help determine the number of vehicles/systems required.  Four examples were
developed during the Phase I effort under this step.  These included: a Mars Ascent Vehicle
(MAV) replacement for a Mars sample return mission, ballistic surface hopper that could travel
500 and 1,000 km distances, a rover/transporter that could travel 300 km round trip once per day,
and an output auxiliary electrical generator that uses chemical power for an outpost.

The next step is the cost/benefit model and analysis.

The predicted cost-benefit of ISRU propellants and their associated production and uses is
greatly affected by the assumption of what is the Earth Launch Mass (ELM) cost or Earth to
Mars surface transport cost.  The latter is much more difficult to estimate out into the future.  The
former can be straight forwardly used parametrically, once we know how much mass we must
launch to Mars to support the exploration/colonization activities.

We plan to use values of $10,000, $1,000 and $400 per kg as the range of Earth Launch Mass
(ELM) costs.  As part of the cost-benefit analysis, we will need to understand under each mission
scenario and how much mass is required from Earth.  This depends on the missions that are
defined, their frequency and their propellant option.  We must include not only ELM propellant
for Mars delivery, but all of the masses associated with storage, processing,
upgrading/refurbishment, resupply, etc. of both Earth-supplied propellant and Mars-supplied
propellants.  We must also consider the different recurring and non-recurring costs of the flight
and ground systems that are designed for each propellant use.  We will estimate these costs using
aerospace CER’s or other software models that are available.  Once the costs for all Mars-based
scenarios are established, and we also know the ELM for the specific option, then we can
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estimate the options cost parameter.  So for each given propellant family we want to analyze we
will have a cost parameter for four different levels of pressure over the appropriate time period.

Once we have analyzed the costs for each option and assessed their sensitivity to the study
assumptions, we would generate groups or families of propellant options that we would analyze.
We expect that there may be significant benefit in selecting both high and low performance
propellants for the vehicles being considered.  If one looks at the modes of transportation on
Earth, one can see that many different combinations exist and usually each for a good reason.
We will attempt to determine the best propellant families to satisfy the lowest expected cost
exploration/colonization scenarios on Mars.  This family or ISRU propellant architecture will
then be recommended at the end of Phase II.

3.5  System Requirements/Ground Rules Definition

Many of the system requirements and ground rules for the study have already been discussed, but
a summary of the current list is provided below.  This list is subject to modification from the
Phase II Workshop to be held in April/May 2000.

• Purpose of the study is to assess cost-effective, in-situ production and use of Mars-derived
oxidizers and fuels to guide advanced concept development, system analysis efforts, and
technology and unique hardware developments

• The study timeframe includes the early manned exploration period and extends 50 years from
the “end” of the initial human Mars exploration activity

• Missions to be used are those defined by the project team (as previously mentioned above)
• Earth Launch Mass (ELM) costs will be parametrically assessed at $10,000/kg, $1,000/kg,

and $400/kg
• Human activity defined for the 50-year period of assessment to be 10,000 humans for high,

1000 humans for medium and 100 humans for low
• Mission vehicle assignment and mission frequency will be determined by consensus of the

workshop participants and the project team and based upon the other requirements and
guidelines

• All cost estimates will be in year 2000 dollars
• Flight vehicles are to include: Mars sample return vehicles, unmanned and manned surface-

to-surface “ballistic hoppers”, surface-to-orbit vehicles, interplanetary transport vehicles,
powered balloons, winged aerocraft, single person rocket backpacks, and single person
rocket platforms

• Ground vehicles are to include: automated unmanned roving vehicles, personal vehicles,
two-person unpressurized rovers, manned pressurized transport rovers, and larger cargo
transports

• Auxiliary power systems are to include: Brayton turbines and fuel cells for small Mars
outposts

• Only propellants to be considered are those derivable from Earth (Earth delivered), the Mars
atmosphere, or water resources from the Moon

• Potential propellant candidates to be considered include: CH4/O2, C/O2, C2H2/O2, CO/O2,
H2O2/CH3OH, CH3OH/LOX and H2/O2.
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3.6  Propellant Family Scenarios

Propellant “family” scenarios include at least one or more propellant combinations.  The
propellant form can be in solid or liquid state depending upon its use as a liquid or solid
propellant.  We expect that up to 4 different propellant combinations could make up one family.

3.6.1  Propellant Processing Scenarios

The propellant processing scenarios that have been identified, reviewed and selected for future
consideration in Phase II are shown below:

1. All Earth-supplied H2 and O2

2. Earth-supplied H2, O2 from the Mars atmosphere
3. Moon-supplied H2 and O2 from Lunar H2O
4. All Mars-supplied H2 and O2 from H2O in the atmosphere
5. CO and O2 made from the Mars atmosphere
6. C2H2 made from Earth-supplied H2 and Mars C and O2 from Mars atmosphere
7. C and O2 made from the Mars atmosphere
8. CH4 made from Earth-supplied H2, C and O2 from Mars atmosphere
9. CH4 made from Mars-supplied H2 (atmospheric water), C and O2 from Mars atmosphere

10. CH3OH made from Earth H2, Mars C and H2O2 from Earth H2 and Mars O2.

3.6.2  Propellant Performance

Analysis was performed to estimate the theoretical performance for various propellant
combinations which might be used on Mars.  For each propellant combination, specific impulse
were generated for different expansion ratios (20:1 and 100:1) and for different atmospheric
conditions (10 Torr, vacuum).  NASA’s CEA code was used to conduct the analysis.  Table 2
presents a summary of the results.  These data were used to calculate the size of different flight
vehicles for different missions.

Table 2.  Summary of Results – Maximum Theoretical Isp for Different Propellant
Combinations, Expansion Conditions

Propellant Combination
CO/L

OX
LCH4/L

OX
LH2/L

OX
Carbon/L

OX
SC2H2/L

OX
CH3OH/H2

O2

Mg/CO2

500 psia, 100:1 to
vacuum

290 402 459 335 401 359 232

100 psia, 20:1 to vacuum 260 368 429 301 367 329 209
500 psia, 100:1 to 10
Torr

276 386 445 320 387 345 220

100 psia, 20:1 to 10 Torr 240 345 408 282 346 308 193

The following seven figures (Figure 19 to Figure 25) present more detail on the performance
data shown above, detailing the variation of specific impulse with O/F ratio for each case.
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Figure 19.  CO/LOX – Theoretical Isp
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Figure 21.  LH2/LOX – Theoretical Isp
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Figure 22.  Carbon/LOX – Theoretical Isp
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Figure 23.  SC2H2/LOX – Theoretical Isp
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Figure 24.  CH3OH/H2O2 – Theoretical Isp
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Figure 25.  Mg/CO2 – Theoretical Isp

3.6.3  CO/O2 Production Plant

The masses and energy requirements for two different sizes of CO/O2 production plants were
developed during the Phase I effort.  The small production plant will convert 10 kg of CO2 into
10 kg of CO and O2 (combined mass) per day.  The large plant will convert 1,000 kg of CO2 into
1,000 kg of CO and O2 (combined mass) per day.  The analysis for the small production plant
assumes that the CO2 compressor and CO/CO2 separator will operate for one cycle per day.  The
analysis for the large plant assume that the CO2 compressor and CO/CO2 separator will operate
for 8 cycles per day.  This will decrease the launch mass requirements when compared to a
simple linear scaling.  The O2 generator in the small production plant would operate four 7 hours
each day, while the large production plant would operate 24 hours per day.  This again reduces
the launch mass required.  The results of this analysis are summarized in Table 3.  The mass
listed is the total launch mass required.  The energy listed represents the total energy required to
operate the plant each day.

Table 3.  CO/O2 Production Plant Mass and Energy Estimates

Small PLANT 10
KG/DAY

Large Plant 1,000 kg/day

Component Mass (kg) Energy (kW-hr) Mass (kg) Energy (kW-hr)
CO2 Compressor 120 24 1,500 2,400
Oxygen Generator 15 15 437 1,500
CO/O2 Separator 120 24 1,500 2,400

Support Equipment 75 - 950 -
TOTAL 330 63 4,387 6,300

3.7  Mission and Traffic/Use Model

With the assumption that man has explored Mars for a 10 to 20 year period and has decided to
stay and grow the population at the colony for a wide variety of reasons, we took on the task to
try to identify realistic missions that require a flight or ground vehicles or chemical
power/storage systems.  We held brain storming sessions with the project staff and discussed
possible missions with outside aerospace experts.  The list of some 19 mission categories is
shown below in Figure 26.
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Figure 26.  Far-Term Mars Mission Categories

Work sheets were developed for each mission category; Figure 27 provides an example for
“Scientific Exploration and Research.”

Data needs included: number of crew, robotic or manned, mission duration, distance from base,
travel time, payload and vehicle type required.  Once these data are developed, then we can
configure a ground or flight vehicle that can satisfy the mission need.  The approach would be to
develop only a few sets of ground and flight vehicles that can satisfy all the missions.  Appendix
B provides the “draft” worksheets for the other mission categories.  Completion of these sheets
will be accomplished in Phase II.

Once we have assigned a defined vehicle to the mission, the next task is to identify how often the
mission needs to be accomplished.  Figure 28 shows a cell printout from Excel spreadsheet that
was created in Phase I to eventually provide the means to input the traffic model of all vehicles
for the low, medium and high scenarios for the given mission categories and propellant family.

• Scientific Exploration & Research
• Commercial Exploration
• Terraforming
• Infrastructure Construction
• Agriculture/Farming
• Manufacturing/Industrial Activities
• Resource Mining
• Weather/Environmental
• Communications Navigation Services
• Surveying/Mapping
• Personal Transportation
• Package/Mail Delivery/Product Delivery/Food

Delivery/Goods/Services/Cargo
• Government Activity/Law Enforcement/Emergency Rescue/Response
• Launch/Space Transport Satellite/Earth Cargo Launch/Space

Transport
• Auxiliary Power/Emergency Power
• Life Support
• Waste/Trash Management
• Health Care/Maintenance
• Virtual Travel Market
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Mission Category:  Scientific Exploration and Research

Mission/Submission Scope? # of Crew/
Robotic

Mission
Duration

Distance from
Base (km)

Travel
Time

Payload
Mass (kg)

Vehicle Type
Required

Past/Current Life on Mars – search for evidence of past life, geology of the planet, ice at
 poles or permafrost (tools, sample boxes, life support, rover, sample rocks/dust, measure
seismic activity)

2/Robotic
2/Robotic
2/Robotic

1-5 days
1 day

3-7 days

4000 km
500 km

10,000 km

Minutes
Hours

Minutes

300
300
300

Ballistic Flight
Ground

Ballistic Flight

Meteorology – study/characterize atmosphere, dust storms, other weather          Delivery Vehicle
Phenomena (temperate, pressure, wind velocity, solar radiation, humidity)         Recovery Vehicle
                                                                                                                                        Sounding Rocket

Robotic
Robotic
Robotic

1 day
1 day
< day

10,000 km
10,000 km
? altitude

Minutes
Minutes
Minutes

10
10
2

Ballistic Flight
Ballistic Flight
Ballistic Flight

Astronomy –     any orbiting systems supplied from Earth
- any ground-based systems located at base, so no requirement

                           for transport

Solar Monitoring – located at base, so no need for transport

Other Science – study meteorites, characterize poles 2/Robotic
2/Robotic
2/Robotic

1-5 days
1 day

3-7 days

4000 km
500 km

10,000 km

Minutes
Hours

Minutes

200
50
200

Ballistic Flight
Ground

Ballistic Flight

Mars Moon Exploration
(landing equipment, tools similar to the search for life/geology mission)

3/Robotic 1 week Moon Orbits Hours 100 Flight vehicle

Mission to Asteroid Belt 3/Robotic Months Asteroid Belt Hours 100 Flight vehicle

Figure 27.  Example of a Mars Mission Worksheet for Scientific Exploration and Research



                ORBI TEC

ORBITAL TECHNOLOGIES CORPORATION                                                       NASA INSTITUTE FOR ADVANCED CONCEPTS

31

[Note: each period represents 5 years]
Propellant: Solid CO/LOX Total Period Summary
           Mission Area Time Period (low model) Time Period (medium model) Time Period (high model) Low Medium

1 2 3 4 5 6 7 8 9 10 Totals 1 2 3 4 5 6 7 8 9 10 Totals 1 2 3 4 5 6 7 8 9 10 Totals
1 Scientific Exploration &Res

FV1 0 0 0 0 0
FV2 0 0 0 0 0
FV3 0 0 0 0 0
FV4 0 0 0 0 0
FV5 0 0 0 0 0
   Totals: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GS1 0 0 0 0 0
GS2 0 0 0 0 0
GS3 0 0 0 0 0
GS4 0 0 0 0 0
GS5 0 0 0 0 0
  Totals: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 28.  Cell Printout from Preliminary Traffic Model Worksheet
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3.8  Vehicle/System Families Scenarios

After we have developed the mission, we will assign the appropriate type of vehicle to the
mission.  The types of vehicles are listed below in Figure 29 under the three vehicle categories.

Flight Vehicles Ground Vehicles Power Systems
MAVs for Sample Return Automated Rovers Turbine
Ballistic Hoppers Personal Closed Rovers Fuel Cell
Surface to Orbit 2-Person Open Rovers
Interplanetary Multi-Person Closed Rover
Powered Balloons Large Cargo Transports
Winged Aerocraft
Single Rocket Backpacks
Single Rocket Platforms

Figure 29.  Vehicle Categories to Be Considered to Satisfy Mission Requirements

For each of these vehicles, we will define a vehicle concept/design with an estimated dry payload
Mars and propellant storage/use capability that will allow the mission to be satisfied.  For
example a hopper vehicle for LH2/LOX would be expected to be smaller and carry less
propellant than an equivalent SCO/LOX-based hopper.  In addition to these vehicles, the
infrastructure/support systems also have to be conceptualized.

Examples of vehicles defined for mission applications are provided in the next section of the
report.

3.9  Assignment of Vehicles/Systems to Missions and Traffic/Use Model

In the all-up study that we are planning for Phase II, the assignment of the defined vehicle types
and sizes (propellant dependant) and infrastructure/ISRU systems would be made and a traffic
model developed such that costs can be determined.  Obviously, in Phase I we did not have the
resources to do a complete analysis.  Therefore, we chose to pick 4 missions and define
vehicles/systems that could provide us some cost-benefit answers based on an estimated ELM
cost.  Four systems were defined; they were:

• MAV Replacement for Mars Sample Return Mission

• Ballistic Surface Hopper, Assuming H/O, CO/O,CH4/O,C/O and Single Stage, 1000 Kg
Payload, Fly to 500, 1000 Km Distances

• Rover/Transporter to 300 Km Distance Once Per Day, Using Fuel Cell or Brayton Cycle

• Outpost Chemical Power Using Fuel Cell or Brayton Cycle and H/O, CO/O,  CH4/O,
CH3OH/O

In the sections that follow, these four applications are analyzed and characterized.
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3.9.1  TSTO Mars Ascent Vehicle (MAV)

The effects of using different terrestrial and ISRU propellants were explored by determining the
mass characteristics of a two-stage-to orbit (TSTO) Mars Ascent Vehicle (MAV) for a variety of
propellant and engine combinations.  The analysis included an estimation of the propellant,
vehicle, and ELM required for each system.  The mission characteristics and vehicle assumptions
common to all propellants are summarized in Table 4.  The overall MAV mission is to place a
3.6-kg payload into orbit for retrieval by an Earth-bound vehicle.  The initial launch velocity
refers to the velocity supplied by the rotation of Mars at the launch site.  As a first approximation
for the Phase I effort, the subsystem masses were assumed to be the same for each MAV,
comprised of the power systems; guidance, navigation, and control; thermal control; auxiliary
cold gas propulsion; and structures.  A rendering of one possible MAV configuration is shown in
Figure 30.

Table 4.  Mission Characteristics
and Assumptions

Orbit: 600 km
Orbit Type: Circular
Payload Mass: 3.6 kg
Stage 1 Subsystem Mass: 16.9 kg
Stage 2 Subsystem Mass: 1.7 kg
Initial Launch Velocity: 241 m/s
First Stage Delta-V: 2382 m/s
Second Stage Delta-V: 1514 m/s
Total Delta-V: 4137 m/s

Figure 30.  TSTO Mars Ascent Vehicle

Performance characteristics for each system are summarized in Table 5.  The propulsion system
mass fractions, defined by Equation 1, were assumed to be the same for bi-propellant and hybrid
systems while those used for the solid system were slightly lower.  The ideal ISP was calculated
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for each propellant combination using the NASA/GRC Chemical Equilibrium Analysis (CEA)
program and the delivered ISP was determined by applying the appropriate efficiency for each
type of propulsion system.  No attempt was made to optimize the mixture ratio from a systems
point of view; the engines were assumed to run at the mixture ratio yielding the highest ISP.  An
explanation of the CEA performance calculations and results is given in Section 3.6.2.

(1) 
p

dryps
ps M

M
MF ,=

where:

mass propellant total M

 systempropulsionprimary  of massdry  M

fraction mass  systempropulsion MF

p

dryps

ps

=

=

=

,

Table 5.  Performance Characteristics for Each Propellant Combination

Propellants Propulsion
System

Mixture
Ratio

Stage 1
PSMF*

Stage 2
PSMF*

ISP

Efficiency
(%)

Stage 1
Delivered
ISP  (sec)

Stage 2
Delivered
ISP  (sec)

SCO/LOX Hybrid 0.57 0.27 0.66 92 253.7 267.0
SC/LOX Hybrid 2.1 0.27 0.66 92 294.3 307.7

SC-H2/LOX** Hybrid 2.2 0.27 0.66 92 311.1 324.6

SC2H2/LOX Hybrid 1.8 0.27 0.66 92 355.6 368.6
HTPB/LOX Hybrid 2.5 0.27 0.66 92 331.2 341.3

LCH4/LOX Bi-Propellant 3.2 0.27 0.66 95 367.0 381.6

CTPB binder Solid - 0.24 0.63 95 268.0 279.4
*PSMF = Propulsion System Mass Fraction
**Solid carbon with 5% H2 additive by mass

The Engineering Equation Solver (EES) software was employed to simultaneously solve for the
MAV system unknowns for each propellant combination.  The required program input and
resulting output are listed below.

MAV Program Input
Ø Delivered ISP for stage 1
Ø Delivered ISP for stage 2
Ø Payload mass
Ø Subsystem mass for stage 1
Ø Subsystem mass for stage 2
Ø Propulsion system mass fraction for stage 1
Ø Propulsion system mass fraction for stage 2
Ø Delivered Delta-V required by stage 1
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Ø Delivered Delta-V required by stage 2

MAV Program Output
Ø Mass of propellant required for stage 1
Ø Mass of propellant required for stage 2
Ø Mass of stage 1 propulsion system
Ø Mass of stage 2 propulsion system

The results of the analysis are summarized in Table 6, including the propellant and vehicle dry
masses; GLOW (Gross Lift Off Weight of the Mars Launch Mass); and ELM (Earth Launch
Mass - the total mass of the MAV systems and propellant transported from Earth).  Terrestrial
propellants are those which are transported to Mars from Earth, and ISRU propellants are
assumed to be manufactured by existing Martian infrastructure, and hence, are not reflected in
the ELM.  While carbon is available on Mars, it was assumed that the hydrogenated solid carbon
grain was manufactured on Earth.  The resulting grain is a highly storable, compact, and inert
package, and eliminates the need to transport LH2, or manufacture it on Mars.

In this case it was assumed that the entire MAV system (minus any ISRU propellants) is brought
from Earth.  However, these results do not take into account the various subsystems that would
be required for transporting the different propellants.  In this regard, the more storable solid
carbon, HTPB, and solid grains would require less thermal control and packaging than the liquid
hydrogen.  Note that in the case of a pure ISRU propellant all of the chemicals are derived from
the Martian environment, as in the case of SCO/LOX, rendering the vehicle dry mass identical to
the ELM.  The ELM is reduced between 42-68% through the use of ISRU, depending upon the
propellant combination.  Per the aforementioned ground rules, the lowest ELM for the cases
considered here would be realized by the use of solid acetylene, reducing the ELM to 32.1 kg.
As expected, the largest ELM is associated with the only non-ISRU system considered (solid)
where the ELM is well over twice as high as for the heaviest of the ISRU systems.  More
detailed mass breakdowns for most systems are given in Tables 7a through 7f (mass is in kg).

Table 6.  Summary of MAV Analysis
Propellant

Combination
Propulsion
System

Terrestrial
Propellants

Propellant
Mass (kg)

Dry Mass*

(kg)
GLOW

(kg)
ELM
 (kg)

SCO/LOX Hybrid - 107.2 50.9 161.7 50.9
SC/LOX Hybrid - 65.9 38.7 108.2 38.7
SC-H2/LOX** Hybrid C, H2 56.3 36.0 95.9 53.3
SC2H2/LOX Hybrid H2 40.4 31.0 75.0 32.1
HTPB/LOX Hybrid HTPB 48.2 33.5 85.3 47.3
LCH4/LOX Bi-Propellant H2 37.5 30.2 71.3 32.4
CTPB binder Solid Solid 81.3 40.7 125.6 122.0

*Dry mass does not include 3.6 kg payload
**SC with 5% H2 additive by mass
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Table 7a.  Vehicle Mass Breakdown
Fuel: SCO

Oxidizer: LOX
Engine Type: Hybrid

Stage 1 Mass
Main Propulsion: 26.6
Subsystems: 16.9
Propellant: 98.6
Stage 1 Total: 142.1

Stage 2 Mass
Main Propulsion: 5.7
Subsystems: 1.7
Propellant: 8.6
Stage 2 Total: 16.0

Payload Package: 3.6
Total Propellant Mass: 107.2
Total Dry Mass: 50.9

Total Launch Mass: 161.7

Table 7b.  Vehicle Mass Breakdown
Fuel: SC

Oxidizer: LOX
Engine Type: Hybrid

Stage 1 Mass
Main Propulsion: 16.1
Subsystems: 16.9
Propellant: 59.8
Stage 1 Total: 92.8

Stage 2 Mass
Main Propulsion: 4.0
Subsystems: 1.7
Propellant: 6.1
Stage 2 Total: 11.8

Payload Package: 3.6
Total Propellant Mass: 65.9
Total Dry Mass: 38.7

Total Launch Mass: 108.2
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Table 7c.  Vehicle Mass Breakdown
Fuel: SC with 5% H2 additive (by mass)

Oxidizer: LOX
Engine Type: Hybrid

Stage 1 Mass
Main Propulsion: 13.8
Subsystems: 16.9
Propellant: 50.9
Stage 1 Total: 81.6

Stage 2 Mass
Main Propulsion: 3.6
Subsystems: 1.7
Propellant: 5.4
Stage 2 Total: 10.7

Payload Package: 3.6
Total Propellant Mass: 56.3
Total Dry Mass: 36.0

Total Launch Mass: 95.9

Table 7d.  Vehicle Mass Breakdown
Fuel: LCH4

Oxidizer: LOX
Engine Type: Bi-Propellant

Stage 1 Mass
Main Propulsion: 9.0
Subsystems: 16.9
Propellant: 33.6
Stage 1 Total: 59.5

Stage 2 Mass
Main Propulsion: 2.6
Subsystems: 1.7
Propellant: 3.9
Stage 2 Total: 8.2

Payload Package: 3.6
Total Propellant Mass: 37.5
Total Dry Mass: 30.2

Total Launch Mass: 71.3
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Table 7e.  Vehicle Mass Breakdown
Propellant: CTPB
Engine Type: Solid

Stage 1 Mass
Main Propulsion: 17.5
Subsystems: 16.9
Propellant: 74.0
Stage 1 Total: 108.4

Stage 2 Mass
Main Propulsion: 4.6
Subsystems: 1.7
Propellant: 7.3
Stage 2 Total: 13.6

Payload Package: 3.6
Total Propellant Mass: 81.3
Total Dry Mass: 40.7

Total Launch Mass: 125.6

Table 7f.  Vehicle Mass Breakdown
Fuel: SC2H2

Oxidizer: LOX
Engine Type: Hybrid

Stage 1 Mass
Main Propulsion: 9.8
Subsystems: 16.9
Propellant: 36.2
Stage 1 Total: 62.9

Stage 2 Mass
Main Propulsion: 2.8
Subsystems: 1.7
Propellant: 4.2
Stage 2 Total: 8.7

Payload Package: 3.6
Total Propellant Mass: 40.4
Total Dry Mass: 31.0

Total Launch Mass: 75.0
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3.9.2  Martian Hopper Analysis

The effects of using different terrestrial and ISRU propellants were also explored by determining
the mass characteristics of a Mars ballistic hopper for four propellant combinations.  The
analysis included an estimation of the amount of propellant, vehicle mass, and earth launch mass
required for each system.  The hopper is designed to transport personnel, supplies, and
equipment from one base to another, using a powered landing, refueling at each base.

Analysis was conducted to determine the optimum launch angle and required propulsion system
delta-V for a given trip distance.  The geometry of a ballistic trajectory is defined in Figure 31.
From the initial value problem (Thomson, pp. 93), the angular position can be shown to be:
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The optimum βο and minimum ∆V can be found by solving the above equation for vo, taking the
derivative of the resulting equation with respect to βo, and setting the numerator equal to zero:















 φ

=β
2

cotarctan2
1

o

( )
( )








β+

β
=

o

o
min 2cos1

2cos2
R
K

v

The eccentricity of the elliptical path, the height of apogee, and the time of flight can also be
determined by following Thomson’s analysis in Section 4.17.

Figure 31.  Geometry of Ballistic Trajectory
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With the velocity increment known, the rocket equation can be used to determine the vehicle
mass fraction (neglecting gravity and drag losses):










 ∆
=
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exp
M
M

spf
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The following charts (Figures 32-40) were produced using a spreadsheet analysis of this basic
approach and allows the payload mass, structural mass fraction, and propellant specific impulse
to vary parametrically.

∆∆V and Optimum Heading Angle for Mars Hopper on Ballistic Trajectories
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Figure 32.  Delta V and Optimum Heading Angle for Mars Hopper
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Apogee and Time of Flight for Mars Hopper on Ballistic Trajectories
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Figure 33.  Apogee and Time of Flight for Mars Hopper

Overall Mass Fractions (M f/Mi) for Mars Hopper on Ballistic Trajectories
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Figure 34.  Overall Mass Fractions for Mars Hopper
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Propellant Mass Fractions (Mp/Mi) for Mars Hopper on Ballistic Trajectories
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Figure 35.  Propellant Mass Fractions for Mars Hopper

Payload Mass Fractions (Mpay/Mi) for Mars Hopper on Ballistic Trajectories

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Range, km

M
pa

y/
M

i

Single Stage
1000 kg payload
Structural Mass Fraction = 0.10

LOX/H2

LOX/CH4

LOX/CO

CO2/AL

Figure 36.  Payload Mass Fractions for Mars Hopper
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Vehicle Masses for Mars Hopper on Ballistic Trajectories
Using LOX/LH2
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Figure 37.  Vehicle Masses for Mars Hopper using LOX/LH2

Vehicle Masses for Mars Hopper on Ballistic Trajectories
Using LOX/CH4
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Figure 38.  Vehicle Masses for Mars Hopper using LOX/CH4
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Vehicle Masses for Mars Hopper on Ballistic Trajectories
Using LOX/CO
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Figure 39.  Vehicle Masses for Mars Hopper using LOX/CO

Vehicle Masses for Mars Hopper on Ballistic Trajectories
Using CO2/AL
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Figure 40.  Vehicle Masses for Mars Hopper using CO2/Al
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Three specific hopper distances were selected for comparison: 500, 1000, and 2500 km.  The
total vehicle delta-V required for a one-way trip with a powered landing is shown in Table 8 for
each case.  The total non-propulsion hopper mass, comprised of a two-man crew, life support,
transport payload, and miscellaneous vehicle systems and supplies, was assumed to be the same
for all distances and propellants.  A mass summary is shown in Table 9 and a rendering of one
possible hopper configuration is shown in Figure 41.  This mass breakdown is assumed for all
hopper results presented in this section.

Table 8.  Delta-V Required
Trip Distance

(km)
Total Vehicle Delta-V

Required
(km/sec)

500 2636
1000 3600
2500 5168

Table 9.  Hopper Mass Breakdown
Description Mass (kg)

Two Man Crew: 158.8
Crew Cabin and Life Support: 453.6
Transport Payload: 1000
Misc. Vehicle Systems and Supplies: 260.3

Total Non Propulsion Hopper Mass: 1873
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Figure 41.  Mars Ballistic Hopper

The amount of propellant required, propulsion system mass (propellant tanks, engine, fluid
delivery system, and nozzle) and total vehicle mass were parametrically calculated as a function
of the propellant combination, structural mass fraction (defined by Equation 2), and trip distance,
using the rocket equation.  Specific impulse, efficiency, and mixture ratio data for the propellants
were the same as shown in Table 2 for the second stage of the MAV, for LH2/LOX: ISP = 436
sec, delivered ISP efficiency = 95%, and O/F ratio = 6.0.

(2) 
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The results for a structural mass fraction of 0.10 are shown in Table 10 including the propellant
and vehicle dry masses; GLOW (Ground Lift Off Weigh - the Mars Launch Mass); and ELM
(Earth Launch Mass).  Terrestrial propellants are those which are transported to Mars from Earth,
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and ISRU propellants are assumed to be manufactured by existing Martian infrastructure and
hence are not reflected in the ELM.  In this case it is assumed that the fully equipped hopper
vehicles are also Martian infrastructure, and do not factor into the ELM calculation.

The GLOW increases exponentially with the distance traveled due to the need to accelerate
larger amounts of propellants, including the propellant required for the powered landing.  It also
appears that the lower performing propellants, which are more easily derived from the Martian
environment, are more attractive for the shorter trips.  For example, the mass of SCO/LOX
required for a 500 km trip is 2.3 times that of the LH2/LOX system whereas this ratio jumps to
6.3 for the 2500-km trip.  There is a similar affect on the mass of the propulsion system that is
reflected in the dry mass listed in the table.

Table 10.  Summary of Martian Hopper Analysis for a Structural Mass Fraction = 0.10
Propellant PROPULSION

System
Terrestrial
Propellants

DISTANCE
(km)

Propellant
Mass (kg)

DRY
Mass
(kg)

GLOW
(kg)

ELM
(kg)

SCO/LOX Hybrid - 500 4040 2320 6360 0

SC/LOX Hybrid - 500 3090 2220 5310 0

LCH4/LOX Bi-Propellant H2 500 2160 2110 4270 129

LH2/LOX Bi-Propellant H2, O2 500 1760 2070 3830 1760

SCO/LOX Hybrid - 1000 8250 2790 11,040 0

SC/LOX Hybrid - 1000 5770 2520 8290 0

LCH4/LOX Bi-Propellant H2 1000 3690 2280 5970 220

LH2/LOX Bi-Propellant H2, O2 1000 2900 2190 5090 2900

SCO/LOX Hybrid - 2500 37,470 6040 43,510 0

SC/LOX Hybrid - 2500 17,170 3780 20,950 0

LCH4/LOX Bi-Propellant H2 2500 8320 2800 11,120 500

LH2/LOX Bi-Propellant H2, O2 2500 5950 2530 8480 5950

The effects of varying the structural mass fraction were also explored.  Figures 42 through 44 are
a plot of the mass of propellant required vs. structural mass fraction for the three trip distances.
Note that as the structural mass fraction increases, the lower performing SCO/LOX pays a higher
penalty than the other two systems.  Conversely, the SCO/LOX system will benefit much more
by future materials and system technology that reduce the overall weight of the propulsion
system.  This is most clearly illustrated by Figure 44.
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Figure 42.  Total Propellant Mass Required for a 500 km Ballistic Hop vs. Structural Mass
Fraction
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Figure 43.  Total Propellant Mass Required for a 1000 km
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Figure 44.  Total Propellant Mass Required for a 2500 km Ballistic Hop vs. Structural
Mass Fraction

3.9.3 Rover

A rover was conceptualized and is shown is Figure 45.

Figure 45.  ISRU Powered Rover
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The rover mission was defined as a 300 km one day trip.  A system of gravel roads was assumed.
Based on a trip distance of 300 km and a transit time of 10 hours, a velocity of 30 km/h was
used.  Turbine efficiency was assumed same for all fuels at 65% chemical potential to
mechanical energy conversion efficiency.

For the initial iteration, the structural mass penalty for storing propellant was a 100 kg storage
tank.  The propellant mass penalty was ½ the mass of the propellant. For example, a 2000 kg
rover that burns 200 kg of propellant and stores the byproducts has a mass of 2300 kg for the
entire duration of the trip (with the tank mass penalty), while a 2000 kg venting rover has a mass
of 2200 kg at the beginning of the trip and 2000 kg at the end.  The mass used to calculate the
propellant usage was therefore 2100 kg.

The rolling resistance per wheel was determined using the following equation:
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The three constants in equation one, nKK c ,, φ  were, until further data can be acquired, left at the
values given in the source, 20855 Pa, 8100 Pa/m, and 1, respectivley.

The total resistance is cR6 , which gives the force needed to keep the vehicle at a constant
velocity.  Multiplying by that velocity gives the power needed to keep the vehicle at that
velocity. Mutiplying by trip time in seconds gives the total energy needed throughout the course
of the trip.  Energy densities of the various propellants have already been calculated. This
analysis assumes a 65% efficiency in the usage of that energy density.  Taking the energy needed
and dividing it by this scaled energy density give the amount of propellant needed to make the
trip. The summary follows:

Totalc FR =6

PvFTotal =
EPt =

fuelm
ed
E =

where cR is rolling resistance per wheel; TotalF is the force required to maintain a constant
velocity; P is the power requirement to mainatin the velocity, v ; t is the total vehicle powered
run time; E  is the total energy required; ed is the energy density of the fuel; fuelm is the total

mass of fuel needed to power the rover.

The mass estimates for the various rover components are listed in Table 11.
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Table 11.  Rover Mass Estimations
Rover Mass Summary

Light
Duty

Mid
Duty

Heavy
Duty

Life Support Hardware 32 32 32
Pressurized Cabin 454 454 454
Waste Management 2.3 2.3 2.3
Medical Supplies 0.1 0.1 0.1
Windows 0.5 0.5 0.5
Crew Accommodations 11.5 11.5 11.5
Lighting 0.1 0.1 0.1
Radiation Shielding 18.1 18.1 18.1
Water, Food and Oxygen 4 4 4

External Lighting 0.5 0.5 0.5
Controls, Navigation,
Avionics, Instruments, GPS

6 6 6

Wheels/Tires (Each) 5 7.5 10
Frame 150 600 1500
Mechanical Delivery System 50 100 200

Cargo Bay (un-pressurized) 80 160 500

Insulation 9.1 9.1 9.1
Electric Power Distribution 5 5 5

Turbine (kg/kJ) 1000 1500 2000
Vehicle Mass 1339 2422 4264

Payload 1000 4000 10000
Total Dry Mass 2339 6422 14264

Assessment of fuel needs for H2/O2, CH4/O2, and CO/O2 was made and is shown in Table 12
below.

Table 12.  Fuel Needs for a 300km, Ten-Hour Turbine-Powered, Rover Mission

Fuel Type H2 /O2  CH4 /O2 CO/O 2

Fuel Use, Exhaust 

Recovered (kg)
113* 154 (13*) 249

Fuel Use, Exhaust 

Not Recovered (kg)
104* 142 (12*) 223

* M a s s  S u p p l i e d  f r o m  E a r t h  o r  M o o n  a s  H y d r o g e n
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3.9.4  Auxiliary Power

Use of CO/O2 in fuel cell energy production has already been proven feasible (AIAA Paper 98-
0650, K. R. Sridhar), over the next century technology advances driven by attractiveness of this
process on Mars should drive efficiencies to 60% and higher with combined cycle processes
utilizing waste heat for base/rover heating.  Molten Carbonate fuel cells already have efficiencies
close to 85% for combined cycle hydrogen fuels (DOE), indicating that high efficiencies could
be attained for an in situ CO/O2 system.  The molten carbonate fuel cell has to be run in an
electrolyzer mode to remove chemisorbed CO from the catalyst, but this process is only
necessary daily and occurs quickly.  New catalysts can lessen or eliminate this problem as well.

Fuel cells have the capability of supplying power on demand without the rundown associated
with low batteries and a modular design would provide for daily power fluctuations and for the
increased loads of a growing outpost.  An RTG would be used for startup heating of the fuel cell
and for powering essential systems when the base is uninhabited; a battery or solar system would
most likely be invoked on a rover.

Parametric equations have been developed for varying fuel cell efficiencies and fuels of H2/O2,
CO/O2, and CH4/O2.  Calculations were preformed to determine the amounts of various fuels
needed to power a Mars base at varying energy loads and production efficiencies.  These
calculations only consider the energy density of the fuels, the base’s power load requirements,
and the efficiency of the process in determining fuel requirements so the results can be applied to
both a fuel cell and turbine energy system.  Existing power loads for Mir and the International
Space Station are given in Table 13 as a reference, and power requirements are given in
kWh/day.  Fuel energy densities are given in kWh/kg fuel.  The fuel requirements are then
calculated using the formula:

ηρe

E
F =

where:
F  = Fuel Mass Required per Day
E  = Daily Base Energy Requirement
ρe = Fuel Energy Density
η = Efficiency
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Table 13.  Fuel Requirements of a proposed Mars Outpost

Fuel Energy Densities
ISS: 105 kW 2520 kWh/day H2/O2 13500 kJ/kg  = 3.75 kWh/kg
Mir: 30 kW 720 kWh/day CO/O2 6540 kJ/kg  = 1.82 kWh/kg

CH4/O2 10080 kJ/kg  = 2.80 kWh/kg

Turbine/Fuel Cell Combined Cycle Fuel Requirements
Facility

kWh/day CO/O2 CH4/O2 H2/O2 CO/O2 CH 4/O2 H2/O2 CO/O2 CH4/O2 H 2/O2 CO/O2 CH4/O2 H2/O2 CO/O2 CH 4/O2 H2/O2 CO/O2 CH4/O2 H2/O2

1200 1651 1071 800 1321 857 640 1101 714 533 944 612 457 826 536 400 734 476 457
1440 1982 1286 960 1585 1029 768 1321 857 640 1132 735 549 991 643 480 881 571 549
1680 2312 1500 1120 1850 1200 896 1541 1000 747 1321 857 640 1156 750 560 1028 667 640
1920 2642 1714 1280 2114 1371 1024 1761 1143 853 1510 980 731 1321 857 640 1174 762 731
2160 2972 1929 1440 2378 1543 1152 1982 1286 960 1699 1102 823 1486 964 720 1321 857 823
2400 3303 2143 1600 2642 1714 1280 2202 1429 1067 1887 1224 914 1651 1071 800 1468 952 914
2640 3633 2357 1760 2906 1886 1408 2422 1571 1173 2076 1347 1006 1817 1179 880 1615 1048 1006
2880 3963 2571 1920 3171 2057 1536 2642 1714 1280 2265 1469 1097 1982 1286 960 1761 1143 1097
3120 4294 2786 2080 3435 2229 1664 2862 1857 1387 2453 1592 1189 2147 1393 1040 1908 1238 1189
3360 4624 3000 2240 3699 2400 1792 3083 2000 1493 2642 1714 1280 2312 1500 1120 2055 1333 1280
3600 4954 3214 2400 3963 2571 1920 3303 2143 1600 2831 1837 1371 2477 1607 1200 2202 1429 1371
3840 5284 3429 2560 4228 2743 2048 3523 2286 1707 3020 1959 1463 2642 1714 1280 2349 1524 1463
4080 5615 3643 2720 4492 2914 2176 3743 2429 1813 3208 2082 1554 2807 1821 1360 2495 1619 1554
4320 5945 3857 2880 4756 3086 2304 3963 2571 1920 3397 2204 1646 2972 1929 1440 2642 1714 1646
4560 6275 4071 3040 5020 3257 2432 4183 2714 2027 3586 2327 1737 3138 2036 1520 2789 1810 1737
4800 6606 4286 3200 5284 3429 2560 4404 2857 2133 3775 2449 1829 3303 2143 1600 2936 1905 1829

kg Fuel at 70% Efficiency kg Fuel at 80% Efficiency kg Fuel at 90% Efficiency

Current Space Requirements

kg Fuel at 50% Efficiency kg Fuel at 60% Efficiencykg Fuel at 40% Efficiency

An analysis of fuel requirements for base energy loads at various efficiencies were calculated for
each prospective fuel system, with the results for the CO/O2 system given in Figure 46, CH4/O2

in Figure 47, and H2/O2 in Figure 48.  For a 70% efficient process, the fuels’ energy densities
were contrasted in Figure 49.

CO/O  System Fuel Requirements at Various Efficiencies
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Figure 46.  CO/O2 System Fuel Requirements at Various Efficiencies
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Figure 47.  CH4/O2 System Fuel Requirements at Various Efficiencies
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Figure 49.  Fuel Requirements for System Power at 70% Overall Efficiency

3.10  Cost Models/Cost-Benefit Analysis

3.10.1  Cost Models

Several cost estimating models were investigated during the Phase I effort for use in Phase II.  A
brief description of some of these models is listed below.

Advanced Missions Cost Model
♦ This is a simple online advanced missions cost model (AMCM) that provides a useful

method for quick turnaround, rough-order-of-magnitude estimating. The model can be used
for estimating the development and production cost of spacecraft, space transportation
systems, aircraft, missiles, ships, and land vehicles.

Cost Estimating Guidelines
♦  Online guide to cost estimating practices and principles

Cost Spreading Calculator
♦ This is a simple online cost spreading calculator that can be used to spread the estimated cost

of a program up to 8 years. The calculator uses a beta curve to determine the amount of
money to be spent in each year based on the fraction of the total time that has elapsed.  The
user enters the total cost to be spread, the beginning and ending years.
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DSN Cost Estimating Cost Model
♦ This is a simple on-line model for estimating the cost required to do a cost estimate for Deep

Space Network (DSN) projects that range from $0.1 to $100 million. The cost of the cost
estimate in thousands of dollars, CE, is found to be approximately given by CE = K*CP^
0.35 where CP is the cost of the project being estimated in millions of dollars and K is a
constant depending on the accuracy of the estimate. For an order-of-magnitude estimate, K =
24; for a budget estimate, K = 60; and for a definitive estimate, K = 115. That is, for a
specific project, the cost of doing a budget estimate is about 2.5 times as much as that for an
order-of-magnitude estimate, and a definitive estimate costs about twice as much as a budget
estimate. Use of this model should help provide the level of resources required for doing cost
estimates and, as a result, provide insights towards more accurate estimates with less
potential for cost overruns.

Expendable Launch Vehicles - International and US
♦ Online data
♦ Gives an estimate of launch cost vs. vehicle used, orbit achieved, and payload weight in

FY94$

Inflation Collectors
♦ Wide variety of different inflation calculators

Learning Curve Calculator
♦ The calculator uses the learning curve to estimate the unit, average, and total effort required

to produce a given number of units. Effort can be expressed in terms of cost, man-hours, or
any other measure of effort. The calculator can be set to compute the Wright learning curve
or the Crawford learning curve. The user is required to enter the effort (in terms of cost, man-
hours, etc.) required to produce the first unit, the total number of units, and the learning
percent.

Missions Cost Operations Cost Model
♦ This is a simple online mission operations cost model (MOCM) that provides a useful

method for quick turnaround, rough-order-of-magnitude cost estimating. The model can be
used for estimating the mission operations cost of manned, unmanned, and planetary
spacecraft. The MOCM is based on NASA data for spacecraft flown between 1962 and 1990.
The MOCM provides an estimate of the basic mission operations and data analysis (MODA)
cost for a given spacecraft.  MODA is defined as the cost of: maintaining and upgrading
ground systems; mission control; tracking; telemetry; command functions; mission planning;
data reduction and analysis; crew training and related activities. The MOCM does not include
the cost of launch vehicles or launch services. The model estimates the average annual
MODA based on the type of mission and the investment cost of the spacecraft.  The
investment cost is defined as the total development and production cost of the spacecraft,
experiments and ground systems.  Note that the investment cost does not include launch
vehicle or service costs.

NASA/Air Force Cost Model
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♦ The NAFCOM96 Cost Model is an innovative computer model for estimating aerospace
program costs. NAFCOM96 is a user friendly estimating tool which operates in the
Microsoft Windows environment.  The model gives users flexibility in estimating by
accommodating up to five systems and ten WBS levels, and by providing the user with the
option of inputting hardware or integration cost or allowing the model to calculate the cost
using NAFCOM96 estimating methodology or user defined equations.

Small Satellite Cost Model
♦ The Small Satellite Cost Model, SSCM, is a parametric cost model which runs on any

Microsoft Excel-supported platform. The latest version, SSCM98, estimates the development
and production costs of a small satellite bus for Earth-orbiting or near-planetary spacecraft.

Space Operations Cost Model
♦ NASA’s Space Operations Cost Model (SOCM) study team is currently developing a suite of

tools to estimate space mission operations costs for future NASA projects. The estimating
methodology is based on a mix of parametric estimating relationships derived from collected
data and constructive approaches capturing assessments of advanced technology impacts and
reflecting experience from current mission planning teams. The study team includes cost,
technical, and programmatic experts from each NASA Center.

Spacecraft/Vehicle Level Cost Model
♦ This is a simple on-line cost model that provides a useful method for quick turnaround,

rough-order-of-magnitude cost estimating. The model can be used for estimating the
development and production cost of spacecraft, launch vehicle stages, engines and scientific
instruments. The SVLCM is a top-level model derived from the NASA/Air Force Cost
Model (NAFCOM) database.

TRANSCOST Model
♦ This model is designed for the initial conceptual design phase of all propulsive space

transportation system elements and engines.  It is a "transparent model" with graphical
display of the reference data that is based on a comprehensive 30-year database from US and
European space vehicle and engine projects.  TRANSCOST is a system-level model, based
on the actual cost of completed projects with careful data evaluation for analytical processing
and application of specific regression factors.

3.10.2  Cost-Benefit Analysis

Table 14 presents a cost-benefit comparison of propellants under consideration for use on Mars.
An Earth launch mass (ELM) cost of $10,000/kg was assumed.  The ISRU savings is the
difference between the cost to launch a baseline (completely Earth-supplied) mission and the
cost to launch the ISRU mission. Carbon and oxygen availability on Mars is assumed; hydrogen
would be from Earth.  Propellant/propulsion combinations, mass requirements and mission
profiles were originally presented for the MAV (Table 6), hopper (Table 10), rover (Table 12)
and outposts (Table13).  The outpost is assumed occupied 50 days per year.  The ISRU cost
savings for the Mars hoppers and rovers are significant.
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Table 14.  Cost-Benefit Comparison of ISRU Propellants

Mission
ELM per Mission 

(kg)

ELM Cost 

($M)

ISRU Savings per 

Mission ($M)

Missions 

per Year

ISRU Savings per 

Year ($M)

MAV Sample Return
Baseline Solid 122 1.22 ---- 1 ----
SC2H2/LOX Hybrid 32.1 0.32 0.90 1 0.90
LCH 4/LOX Bi-Prop 32.4 0.32 0.90 1 0.90
SC/LOX Hybrid 38.7 0.39 0.83 1 0.83
HTPB/LOX Hybrid 47.3 0.47 0.75 1 0.75
SCO/LOX Hybrid 50.9 0.51 0.71 1 0.71
SC-H2/LOX Hybrid 53.3 0.53 0.69 1 0.69

One Way Hopper (1000 km)

LH2/LOX Bi-Prop Baseline 2,900 29.0 ---- 10 ----
LCH 4/LOX Bi-Prop 220 2.20 26.8 10 268
SC/LOX Hybrid 0 0 29.0 10 290
SCO/LOX Hybrid 0 0 29.0 10 290

Turbine Powered Rover (300km)

LH2/LOX Turbine Baseline 113 1.13 ---- 100 ----
LCH 4/LOX Turbine 7.7 0.08 1.05 100 105
SCO/LOX Turbine 0 0 1.13 100 113

Outpost Auxiliary Power

LH2/LOX Turbine Baseline 1400 14.00 ---- 50 ----
LCH 4/LOX Turbine 100 1.00 13.00 50 650
LCO/LOX Turbine 0 0 14.00 50 700

Note: Processing equipment not amortized over ISRU derived propellant ELM

3.11  Recommendations for ISRU Propellant Technology Development

Significant technology development will be required before the Mars ISRU architecture can be
put into place.  ORBITEC is proposing to determine the feasibility of two of the promising
propellant performers (SC/LOX and SC2H2/LOX) by conducting small-scale rocket engine test
firings early in the Phase II so that they remain possible or are dropped from consideration.
Propulsion technology for advanced cryogenic hybrids needs to be developed further than
ORBITEC has taken it to date.  The ORBITEC flight type LH2/SOX engine tests should prove
very useful here.  More work is needed to develop efficient cryogenic coolers to support ISRU
missions.

A significant amount of technology development in space-qualified ISRU processing systems
will be necessary and should begin now.  Very small-scale-systems for the Mars 2001 Lander are
to be flown; however, larger systems need to be flight qualified.

As a result of the Phase II architecture study, we expect to identify and subsequently
recommended technology development for critical times.  The technology for processing the
propellants from the atmosphere appears to be in hand for CO and O2 production via the
University of Arizona.  K. R. Sridhar has provided us data that indicates that electrolytic
processing scales favorably as it get larger (see Section 3.6.3).
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4.0  CONCLUSIONS

The conclusions that have been made as a result of this Phase I NIAC study are as follows:

• ISRU will be a significant benefit to the Mars Exploration Program

• The SCO/LOX propellant system is likely good for short ballistic hops and wide use in
ground systems; it will likely require staging or other propellant saving measures for
large orbital operations

• Improving mass fraction helps lower-performance systems

• Cryogenic solid grains can be made and stored in Mars propellant facilities

• CH4/LOX propellants are excellent for large orbital operations

• Carbon/LOX and acetylene hybrids also are excellent for more demanding missions and
require further consideration

• H2/O2 systems would be best suited for high-performance missions, if Mars can supply it

• Large cargo transports are best accommodated by ground transport vehicles

• Ballistic rocket flight makes sense for high priority missions

• O/F choice can make a significant cost-benefit difference

• For ground-based systems, hydrogen in the exhaust can and should be recovered

• Consider savings attributed to wings, aeroshells, parachutes, etc

• Likely need nuclear power systems in many sizes

• The ISRU analysis approach we are pursuing is a complex problem

• Need to do a reasonable concept design on vehicles and process equipment to arrive at
correct answer.
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5.0  RECOMMENDATIONS

This section presents ORBITEC's study recommendations that have been based on the Phase I
work.  Our recommendations are:

1. NIAC fund ORBITEC's proposed Phase II effort

2. Gain participation of key NASA staff in the Phase II Workshop

3. Gain participation of Dr. Robert Cassanova, NIAC Director, in the development of the Mars
propellant architecture study workshop

4. Conduct feasibility testing for SC/GOX and SC2H2/GOX in Phase II

5. Carry out the system architecture study to determine the best overall ISRU approach

6. Study, analyze, and develop the most promising ISRU processing techniques

7. NIAC develop contact with Dr. Gerald Sanders, NASA/JSC, because of his significant
interest and responsibilities in NASA’s ISRU program.
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APPENDIX C

MISSION MODEL WORKSHEETS
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Mission Category:  Scientific Exploration and Research

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Past/Current Life on Mars – search for evidence of past life, geology of the planet, ice at poles or permafrost
(tools, sample boxes, life support, rover, sample rocks/dust, measure seismic activity)

2/Robotic
2/Robotic
2/Robotic

1-5 days
1 day

3-7 days

4000 km
500 km

10,000 km

Minutes
Hours

Minutes

300
300
300

Ballistic Flight
Ground

Ballistic Flight

Robotic Infinite Infinite N/A 50 Ground

Meteorology – study/characterize atmosphere, dust storms, other weather phenomena                                               Delivery Vehicle
(temperate, pressure, wind velocity, solar radiation, humidity)                                                                                      Recovery Vehicle
                                                                                                                                                                                                Sounding Rocket

Robotic
Robotic
Robotic

1 day
1 day
< day

10,000 km
10,000 km
? altitude

Minutes
Minutes
Minutes

10
10
2

Ballistic Flight
Ballistic Flight
Ballistic Flight

Astronomy – any orbiting systems supplied from Earth
                     - any ground-based systems located at base, so no requirement for transport

Solar Monitoring – located at base, so no need for transport

Other Science – study meteorites, characterize poles 2/Robotic
2/Robotic
2/Robotic

1-5 days
1 day

3-7 days

4000 km
500 km

10,000 km

Minutes
Hours

Minutes

200
50
200

Ballistic Flight
Ground

Ballistic Flight

Mars Moon Exploration
(landing equipment, tools similar to the search for life/geology mission)

3/Robotic 1 week Moon Orbits Hours 100 Flight vehicle

Mission to Asteroid Belt 3/Robotic Months Asteroid Belt Hours 100 Flight vehicle
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Mission Category: Commercial Exploration

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Identify Resources – similar to past/current life and geology missions
(look for water, mineral and metal deposits, fuels and other valuable resources)

2/Robotic
2/Robotic
2/Robotic

1-5 days
1 day

3-7 days

4000 km
500 km

10,000 km

Minutes
Hours

Minutes

300
300
300

Ballistic flight
Ground
Ballistic

Robotic Infinite Infinite N/A Ground
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Mission Category:  Terraforming

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Terraform Planet                                                                                                                                                                           Small Scale Robotic
2/Robotic
Robotic

Infinite
3-7 days

< day

Infinite
10,000 km
? altitude

NA
Minutes
Minutes

50
100
20

Ground
Ballistic

Sounding

                                                                                                                                                                                                         Large Scale Robotic
Robotic

Infinite
Weeks

Infinite
10,000+ km

NA
NA

500
10

Ground
Long-Duration

Atmosphere
Vehicle
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Mission Category: Infrastructure Construction

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Survey Mission – transport people to site for survey purposes
(carry life support equipment, return samples, survey tools)

3 1-5 days 10,000 km Minutes 300 Ballistic

Construction Equipment – bulldozer, soil mover, digger, drill,                                                                          Construction Equipment
                                               portable habitat                                                                                                              Transport Equipment

1
1

< 1 day
1-2 days

_
_

Ground
Ground

Heavy Lift Air Vehicle 2/Robotic < 1 day 10,000 Balloon
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Mission Category:  Agriculture/ Farming

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

No requirement for additional transportation system.
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Mission Category: Manufacturing/Industry

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

No requirement for additional transportation system.
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Mission Category: Resource Mining

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Resource Transport – move raw materials from mine site to processing site                                                                                    Rover
                                                                                                                                                                                                      Flatbed Truck

2/Robotic
1

< 1 day
1-2 days

350 km 10,000
500

Ground
Ground

Heavy – Lift Air Transport
                                                                                                                                                                                                                    Large Robotic < 1 day

10,000
Long-duration

Air vehicle

Ballistic Launch Trajectory (catapult) – move raw materials from mine site to processing site Robotic < 1 day ? 100 Ballistic

««Explosives - Al/O2, other propellant combinations

Excavation equipment – drilling, rock crushing, loaders                                                                                        Excavating Equipment 1 < 1 day Ground
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Mission Category:  Weather/Environmental

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Deploy/maintain/update weather stations    10 – 10,000 stations
Call NOAA office UW – what we could need

Robotic
Robotic

Indefinite
days

5000 km
5000+ km

5
station

Ground
Ballistic

Satellite Launch – satellites supplied from Earth Robotic < 1 day Orbit Minutes 50-100 Launch vehicle
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Mission Category: Communication and Navigation Service

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

GPS Satellites – supplied and launched from Earth Robotic 50 Launch Vehicle

Telecommunication Satellites – supplied and launched from Earth Robotic 50 Launch Vehicle
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Mission Category:  Surveying/Mapping

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Satellites – supplied and launched from Earth

Mapping/Surveying 30 Long-Duration
Air Vehicle
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Mission Category:  Personal Transportation

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Car/Van
   Electric/ISRU

1-6 < 1 day 160 km 5 Hours 100 Rover

Bus 40 < 1 day 300 km 6 Hours 100 Bus

All-Terrain vehicle 1-2 < 1 day 50 km 5 Hours 200 Small rover

Motorized sled 1 < 1 day 50 km 1 Hour 50 Rover

Ballistic Vehicle Personal Transport < 1 day 10,000 km Minutes 100 Ballistic
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Mission Category: Package/Mail Delivery

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Cargo delivery Robotic 1 week 10,000 km DAYS 2,000 kg Ground

Emergency Robotic < 1 day VARIED Minutes 10 kg Ballistic
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Mission Category:  Government Activity

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Emergency Response (medical supplies, life support)                                                                                                                         Large
                                                                                                                                                                                                                    Small

6
6

< 1 day
< 1 day

10,000
1,000

Minutes
Minutes

100
10

Ballistic
Ballistic

Law Enforcement (use personal transportation vehicles) Robotic Infinite Infinite NA 50 Ground
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Mission Category: Launch/Space Transport

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Orbital vehicle                                                                                                                                                                                  Passenger
                                                                                                                                                                                                                  Cargo

1,000
1,000

Launch Vehicle
Launch Vehicle
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Mission Category: Auxiliary Power

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Base emergency back-up power.

Portable power source.
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Mission Category:  Life Support

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

See resource mining transport and cargo transport.
Rest of equipment on the base site.
No requirement for additional transportation system.
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Mission Category: Waste/Trash Management

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

Reprocess on site or shipped via cargo transport

High-level nuclear waste transport
                                 (Iron Ore transport)

2 10,000+ km Ground
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Mission Category:  Health Care/Maintenance

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

No additional transport required.
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Mission Category: Virtual Travel Market

Mission/Submission Scope? # OF
CREW/

ROBOTIC

MISSION
DURATI

ON

DISTANCE
FROM

BASE (KM)

TRAVE
L

TIME

PAYLOA
D

MASS
(KG)

VEHICLE
TYPE

REQUIRED

No additional transport required.  Use existing rover to mount video/control system.
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