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EXECUTIVE ABSTRACT 
 
You, the reader, see a 3D world. Nature has equipped you with a brain desperate to see 
the 3D world so important to your survival. It contains very fast subconscious 
computational modules that assemble all evidence of three-dimensionality and present to 
your consciousness a 3D image. If you close one eye, the perception you experience does 
not go flat. It is quite 3D. So your brain can do something very rapidly that no computer 
can now do – produce 3D information from a 2D image. As there is no 3D information in 
a 2D image, your brain must inject that information using built- in and learned 
assumptions. If we are ever to produce a system that perceives the world as we do, we 
will need a “preconscious” module that produces a 3D image form a 2D image. 
 
In work before writing the Phase I proposal, we showed that such a thing could be done. 
But we had done only simple objects at close range, and even those calculations required 
substantial human intervention. This was not a suitable basis for Artificial Visual 
Perception (AVP), but it was a good start. The goal of the Phase I effort was to determine 
if and by what means we might be able to accomplish this in real time (30 frames per 
second). Obviously, that precludes human intervention. The answer to that question we 
found in Phase I was a qualified “yes.” We can do it in real time given multiple images of 
the scene from different perspectives – something that automatically happens as 
platforms and scenes move. The computations are still slow and difficult, but two things 
can save us  

1. The computations can be partitioned among multiple processors and 
2. We can count on Moore’s law to help out in future processors. 

 
This represents a massive advance from where we were before the Phase I effort, but we 
are far from having an AVP system. The 3D from 2D module will have to be automated 
and speeded up, other preconscious modules such as Artificial Color, optic flow, and 
shape classification must also be made real time. Then, somehow, these disparate reports 
form many preconscious modules must be bound into a single “conscious” perception. 
That cannot even happen in our proposed Phase II effort, but we can use Phase II to make 
AVP possible in a generation, say, by the year 2020. That is why we call our Phase II 
proposal Vision 2020. 
 
 
 
 
 
 
 
 
 
 
 



 

WHERE WE STOOD BEFORE PHASE I 
 
Before we even wrote the Phase I proposal, the PI and his colleagues at the subcontractor 
– Physical Optics Corporation – had shown several critical things 

1. It was possible to use the almost-abandoned mathematics of catastrophe theory to 
analyze the information- lossy projection of a 3D scene into a 2D image; 

2. Only the two stable catastrophes – fold and cusp – have any rational probability of 
occurring; 

3. The locations, scales, and orientations of those two catastrophes provide a 
complete description of a 2D scene. That is, we can reconstruct the scene from 
those elements alone; and 

4. We can reconstruct a slightly rotated scene from slightly rotated catastrophes to 
generate a stereo pair. 

 
Your eye/brain is so anxious to see a 3D scene that if one of a stereo pair if greatly 
degraded relative to the other, you see a 3D scene with the quality of the better image. 
This offered hope that we could immediately start viewing some of the 2D images in 
NASA’s massive archive in 3D. Furthermore, by controlling the rotation, we can get 
hypo and hyper stereo if desired. We anticipated and now anticipate with more 
confidence that this will serve NASA technical and public relations needs quite well. But, 
the ultimate system goal of Artificial Visual Perception remains the driver of our work 
and the aim of our Phase II proposal.  
 
Shown in Fig. 1 is an indication of the sate of the art when we entered Phase I. The object 
is simple, the analysis is hard, but the result is a stereo pair. Feasibility was established. 
 

BACKGROUND ON 3D, 2D, AND CATASTROPHES 
Rigorous catastrophe theory (CT) is quite sophisticated mathematically and is a purely 
geometric theory, devoid of physical concepts such as illumination. Both factors weigh 
against it as a model of early vision. In this paper, both objections will be met. An 
argument will be presented that modern neural networks offer a biologically plausible 
way to do something very like ABC.  And, classical CT will be broadened to become a 
photo-geometrical theory and no longer purely geometrical.  We turn to that extension of 
CT now. 
 
Starting with the 2D retinal image with coordinates (u,v) of the 3D scene, we added a 
third dimension W (more properly, it should be derived from three color values R,G, and   
B).  This 3D space is now abstract and no longer purely geometrical.  We also extended 
the input space from (x,y,z) to the abstract 4D space (x,y,z; B), where B is brightness. We 
can now describe the collapse of the 4D input space into the 3D image space by ABC’s 
nonlinear transformation (see Methods).  Next we describe each physical object in terms 
of its own body-centered normal coordinates     ξ ,h( )as described in (17).  These lead to 
ABC singularities or catastrophes in their canonical or normal form.  In ABC, we can 



deal with only the two stable Whitney catastrophes from among the 14 catastrophes listed 
by Thom and Arnold Figure 1 shows how both of those catastrophes, cusp and fold, have 
their 3D local structure projected into the 3D retinal space. 
 
The ABC mapping from object-space, in normal coordinates, into retina-space, has the 
form: 
 

u = F1 (ξ, η)        (1a) 
v = F2 (ξ, η)        (1b) 
W(u,v) = F3 ( ξ,η; Β)       (1c)  

 
the (1a) and (1b) are CT geometrical projections, while Eq. (1c) is a physical formula, 
describing photometric relations between object surface (ξ, η; B) and retina space (u,v; 
W). We are not the first to write it, as it is somewhat obvious. It is employed, for 
instance, in shape-from-shading calculations. But what we do next is new. We apply 
catastrophe theory in this mixed mathematical-physical hyperspace. That describes not 
only real dimensionality and location of the object in direction to viewer but also the 
effects of illumination, shading and clor changes all four together. The result is not an 
actual third dimension but how it appears to viewer. After a number of rigorous 
mathematical steps, described briefly below, we can rewrite formula (1c) as a sum of two 
parts: 
 

    W(u,v) =
    
M(B)

I( )

+ g x,h( )
II( )

     (2) 

 
there M is the regular (Morse ) form, representing standard photometric projection 5, 
while g is a new singular form, representing all object surface singularities (i.e.,  cusp and 
fold (see Fig. 1)). 
 

 
 
Figure 1.  Illustration of Whitney’s two stable catastrophes:  cusp and fold; the first  one 
described in normal coordinates as: ηξηξ =⋅+= vu ,3  ?and the second one by: 

ηξ == vu ,2   We could observe that  fold catastrophe can be identified with extrernal 



boundary [8]. Both catastrophes can be presented either as 3D  in ),( ηξ space, (a,b) or 2D  
intensity in (u, v) –space (c,d). 
 
Being the generalization of Thom’s geometrical lemma (21), the Formula (2) is the main 
result of the ABC-model.  It demonstrates a surprising result that, in addition to regular 
photometric term (I), we also obtain the second, singular term (II) that does not depend 
on luminance-B. In order to be in agreement with vision perception that allow objects to 
be recognized independently of illumination, we decided to apply only term (II) (i.e., 
completely ignoring the regular term (I)) for image reconstruction: to our even greater 
surprise, we obtained quite good full scene synthesis (Fig. 2). 
 

    
 

 Fig. 2. The image on the right was reconstructed from catastrophes found in the image 
on the left. 
 
A short description of the ABC computational algorithm can be done based again on 
Equation 2. We use two independent software programs - one for significant singular 
component extraction and the other for regular surface modeling. The first software 
program extracts highly visible, long lines of folds and cusp points. The result of this 
extraction is segmentation of the entire image into independent areas. Usually these areas 
represent a significant part of entire image. The second software program models a 
surface inside of  the separated objects.  That is, we model the jumps into different 
directions that represent folds as well as the smooth surfaces between them. Smooth 
surfaces are modeled by a least squares method and represent regular part of Equation 2.  
We use first and second order dependencies for the smooth surfaces.  
 
This second program applied to results from the first a with zero-tree encoding algorithm 
gives compression results much better than JPEG and comparable to leading Wavelet 
algorithms (SPIHT). But scope of this article not description of the algorithm but 
similarity of this approach to processing procedure for human visual system. 
 
Note that the information loss is not uniform across all parts of the scene. The scale factor 
has influenced the reconstructed image. The dome in Figure 2b is well preserved, while 
the background leaves are less well described.  This is shown in more detail in Figure 3, 
where those specific scene portions are shown at a high DR. To give some sense of the 
quality of reproduction, we measure the Peak-to-Signal-to-Noise-Ratio or PSNR for 
those same two scene portions and various a or DR values, as in Figure 4.  Objects 
become clearer as we attend closer to them.  Remember that we did not define any object 



a priori. The dome arose as an object in Figure 2 fully unsupervised. The leaves emerge 
as distinct objects as we decrease a. This is precisely the way human vision seems to 
work. 
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Figure 3.  Similar to Figure 2b, with characteristic fragments of the scene, such as the 
dome and the leaves for DR-values: 20, 40, 60, and a –values: 0.016; 0.023; 0.031 
respectively. We could observe that image quality of the dome is significantly better than 
that of the leaves for corresponding a-value (compare:  (a) with (d), or (b) with (e)).  This 
means that the ABC non-linear filtering provides an automatic segmentation process, by 
extracting an “object of interest” (here: the dome) by analogy to good paintings. 
 
Impressionist painters achieved the effect of backgrounds with “too-high a” routinely.  
Unlike nature that is somewhat fractal with new information greeting every increase in 
resolution, impressionist paintings look realistic only from a particular distance. 

 
Figure 4. Peak-Signal-to-Noise-Ratio (PSNR) as a function of Data Reduction (DR), or 

Catastrophe Resolving Element’s a-value (proportional to DR value), for two 
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characteristic fragments of the scene (Figure 1), as in Figures 3a, 3b, 3c (the dome), and 

Figures 3d, 3e, 3f, (the leaves).  We see that PSNR-values for the dome are always 

significantly higher than the corresponding PSNR-values for the leaves.  The PSNR-

values are defined as:  
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gray value (averaged over color), for data-reduced image, and f is its corresponding value 

for the original image, summarized over N by M-number of all pixels of the frame. 

 
 
The most common way of producing 3D visualization is stereo display. Each eye is given 
a different view of the scene and the viewer’s visual processing system causes him to 
perceive the 3D scene that would have to have been present to have caused those disparate 
views. With ABC, we can rotate the local catastrophes and thus create a view of the object 
from a different direction. The original and the rotated image (both derived from the 
original 2D image) constitute a synthetic stereo pair that allows a viewer to see the scene 
in 3D. Figure 5 illustrates the results of such a rotation. Obviously, we have assumed 
relatively small rotations that keep each catastrophe in both views. That often happens. 
Our method simply does not apply if the rotation and scene are such that our assumption 
breaks down. 
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Figure 5.  Demonstration of 3D nature of catastrophes on the basis of a simple 
photographic object, a cup, including: (a) data-reduced cup (DR=20:1); (b) cup’s fixation  
area: an ear; (c) detailed illustration of catastrophes as 3D objects; a cusp area is shown 
only from one side; the second hidden side is shown as a broken line; (d) using 3D profile 
of both catastrophes, a cup, coded as in Figure 2a, has been automatically rotated by 2°, 
thus, demonstrating local 3D dimensionality of a monoscopic image in catastrophic 
representation (Figure 2a). 
 
The presented analytic modeling of image analysis/synthesis demonstrates that high data 
reduction is possible, with only two primary elements – catastrophes. The primary 
elements are basic building blocks for any scene, any image, and any object.  A question 
arises if such modeling can, in principle, be a basis for analysis of visual perception.  In 
this context, we can observe that the ABC algorithm reduces membership of primary 
elements to an absolute minimum, an optimum situation from an informational point of 
view (a membership with only single primary element is rather an unrealistic scenario).  
Moreover, within the ABC system, entire 3D image geometry is reduced into the 2D 
intensity retina pattern, and such mapping is locally isomorphic (or even homeomorphic).  
This means that stereopsis would be a rather local phenomenon, well observable at larger 
distances.   
 

 

Figure 1.  Illustration of Whitney’s two stable catastrophes:  cusp and fold; the first  one 
described in normal coordinates as: ηξηξ =⋅+= vu ,3  ?and the second one by: 

ηξ == vu ,2   We could observe that  fold catastrophe can be identified with extrernal 
boundary [8]. Both catastrophes can be presented either as 3D  in ),( ηξ space, (a,b) or 2D  
intensity in (u, v) –space (c,d). 
 
 
Attneave pointed out that there is much redundancy in natural images and suggested that 
the subjective prominence of borders provides an example of a psychological mechanism 
that takes advantage of this fact: you can represent an object more economically by 
signalling transitions between object and non-object because these are the unexpected, and 
therefore information-bearing, parts of the image. He illustrated with his famous picture of 
a sleeping cat that the same rule applies to the orientation of boundaries, for the picture 
was produced simply by connecting the major transition points in the direction of the 
border that outlines it. This is precisely the reconstruction process ABC represents. It 
locates the discontinuities (catastrophes) along with their orientation, scale, and size and 
uses that information to reconstruct the image. Thus, we argue, Attneave’s work shows 
that humans use a process much like the ABC process discussed here. 
 
In summary, we have demonstrated that catastrophe-based ABC  is a possible model for 
vision perception, since we could not find any contradiction with equivalent  
neurobiological results, while the following features of visual cortex seem to agree with 
the ABC system:  foveation search with singular fixation points; local matching 



corresponding parts of two stereoscopic retina images; local 3D features of monoscopic 
images; 2D structure of visual cortex (22); high data reduction (26); modular and modestly–
parallel visual cortex architecture (27); highly-nonlinear and hierarchic feature extraction (26-

28) leading to neural net models (31-32); highly effective pattern recognition, highly-
independent on illumination, shadowing, color, orientation and scale; and finally, 
excellent image quality reconstruction (synthesis) from highly-disperse singular 
elements. 
 
It should be noted that a total number of singularities have been determined by only two 
factors:  scale, represented by a-value, and their possible types (here are only two:  cusp 
and fold).  The remaining part of algorithmic procedure, including the reconstruction 
(synthesis) of a scene, has been done automatically, by algorithmic computing.   
 
 

TECHNICAL ACCOMPLISHMENTS IN PHASE I 
 
Task 1 Review of Shape Recovery Methods and Implementations  
 
Within this task a comprehensive review of shape from shade and photoinclinimetric 
methods presently employed will be compiled with an emphasis on the utility to 
spaceborne and planet based imagery including the contributions of catastrophe theory to 
the problem. A broad range of differing approaches to the problem of the analysis of 
terrain and material since Rindflesch’s seminal work on lunar profiles in 1961, the unique 
properties of many planetary surfaces and the predictable illumination patterns has led to 
the particular utility of these methods to planetary sciences.  A synthesis of these methods 
and a reevaluation of the specific algorithms operating with respect to the recent 
emergence of easily implemented massive parallelism on the scale of individual ASIC 
chips and compact processor clusters. In addition the utility of the catastrophe based 
methods for quantification of boundaries and refinement of boundary conditions will be 
evaluated. In the same manner an evaluation of the methods for shape recovery from 
texture gradients will be evaluated in the same manner.  
 
While the basic problem of extracting the gradient and integrating the resultant 3D 
information has been clearly defined in terms of a first order PDF in two dimensions a 
broad range of differing methods for the solution of this superficially simple problem 
have been applied in an attempt to obtain stable and consistent solutions. It is now 
possible for the significance of various methods to be evaluated as they relate to a 
consolidated vision system for probes and analysis. 
 
Complexities associated with the difficulties associated with the determination of initial 
conditions and the presence of noise, compression artifacts, and quantization errors, 
stable and accurate convergence to a consistent value is often quite challenging. As a 
result a broad variety of methods have been attempted within the field.  These various 
methods will be categorized and tested for the present application.  In addition the 
implications of recent findings with regard to catastrophe theory prompts a need for a 



reevaluation of the various methods employed in the light of the improved nature of the 
boundary conditions this method provides. Finally necessity of employing compression 
due to bandwidth limitations within the system it will be necessary to evaluate these 
methods in the presence of the various common forms of compression. 
 
A comprehensive analysis of the methods for shape recovery by the use of stochastic 
analysis of image texture in a manner complementary to that of the shade to shape 
algorithm in order to allow for analysis of broken ground which is too finely textured as 
to allow for the recovery of shape from shading. Once again the specific conditions of the 
application will be applied to test the various methods reviewed. In addition, the effects 
of compression will be reviewed for each method considered. 
 
Finally the methods will be reviewed in conjunction with various computer vision and 
image understanding methods. By viewing shape recovery within the broader context of 
the full range of computer vision tools it 
 
As expected, we found that only the two stable catastrophes (cusp and fold) were 
necessary to sort out 3D information.  
 
We selected a representative dataset for analysis and processing. In order to obtain a clear means 
of calibrating our measurement process we selected data from the Mars digital image mosaic 
(MDIM) with registered Mars orbital laser altimeter (MOLA) data. By employing these datasets 
it is possible to confirm the results of the our elevation estimates, as well as modeling us to model 
our lighting model. 
 
Our initial dataset is the northernmost volcanic peak of the Tharsis Montes mountain chain on 
mars (near Olympus Mons), this area was selected since it predominantly consists of one major 
peak, and fills a 256x256 image space at 1/32 of a degree resolution. Figure 1 shows the location 
of the image within a topographic map of Mars. The specific image was extracted from the 
MDIM 2.0 dataset by the “Plot-A-Planet” website of the Planetary Data system (PDS). The 
specific information on the image is shown in Table 1. 
 
 



 
 
Figure 6. These are the raw data we used to compute views from various directions. 
 
During this period we made considerable progress toward automatic extraction of 
catastrophes as suggested below. The critical operation is finding the points at which the 
surface normals are themselves normal to our direction of observation. We can compute 
this, given those data, from any direction of view in principle. That would allow us to 
reconstruct a view from that angle. Most but not strictly all spots that have normals 
normal to the view directions are, in fact, catastrophes. 
 



Figure 7. Mapping of dot product of normals of MOLA data with vector directed at [0,-
1,0] color indicates value of dot product for each normal and black line indicates points at 
which the value is zero (i.e. a catastrophe).  



 
Figure 9. Upper picture: Plot of MOLA elevations (vertical dimensions exaggerated) as 
an orthogonal projection from the [0,-1,0] direction, catastrophes shown in blue. Lower 
picture: Catastrophes shown alone including those occluded from view in upper picture. 
 
Task 2 Development of a multiluminant shape recovery system  
 
The inherent difficulties associated with the use of simple monoscopic shape recovery 
discussed previously has led to the invention of a novel and highly innovative method of 
shape recovery the multiluminant method. The multiluminant method is an active 
imaging method that employs illumination by an array of modulated LEDs in conjunction 
with either a CCD or CMOS imaging device. By rapidly cycling between differing 
positions and wavelengths of the LED array it is possible to process out both ambiguities 
in shading and albdeo.  By incorporating optical notch filters it is possible to operate the 
proposed system even under intense sunlight without interference. The basic principle is 
to obtain a series of images of the scene that we wish to perform shape recovery upon 
which differ only with regard to the angle and wavelength of the source employed.  
Images illuminated from a specific angle but differing angle are first processed to 
determine the differences between the intensities of the image between the images, the 
variation of brightness relative to the wavelength are employed to extract variations in 
albdeo and texture which are generally wavelength dependent as opposed to shading 
which is as a rule is independent of wavelength. Once this has been done, the 
consolidated image from each illumination angle is then compared. The scene under 
consideration is identical in each case but the shading differs. The variations in shading 



and shadowing may then be used to resolve the ambiguities generally encountered within 
standard monoscopic shape from shading algorithms.  In particular due to the presence of 
multiple shading conditions from known sources it is possible to unambiguously 
determine the gradient of the imagery when three or more illumination points are known. 
Once this has been done both ambiguities in shading and aldebo are eliminated and a 
reliable mapping of the slope of each surface has been computed.  This technique differs 
from stereophotographic methods in that a single fixed camera (and thus a single fixed 
viewpoint) is employed.  The method differs with regard to the use of structured light in 
that there is no need for a projector or reticule   
 
It overcomes a difficulty encountered earlier in Phase I wherein we found that the 
information in a single image was insufficient to produce a reliable 3D image for many 
NASA purposes. Instead, we decided that (at least in some cases), we could control the 
images from a single camera by using multiple illuminants. This is a powerful new 
concept that should be especially valuable in one of our planned long-term applications – 
planetary exploration. See below for how we plan to insert this now into NASA’s long 
term plans. 
 

NONTECHNICAL ACCOMPLISHMENTS IN PHASE II 
 
If Vision 2020 – our long-term goal of providing NASA a useful Artificial Visual 
Perception system by the year 2020 – is to succeed, it will need far more time and money 
than NIAC can provide. We must recruit interest in it both within and without NASA 
from researchers who can add the components we cannot and funding agencies that can 
provide the time and money. We believe that only NIAC is a place where long-term goals 
are taken seriously. The other NASA and non-NASA agencies need something tat can be 
done quickly. Every component of Vision 2020 must stand on its own and be 
independently valuable. Not surprisingly, that is the way nature built your visual 
perception system. It evolved many components independently and bound their results 
together. We were faced with the problem of getting NASA and other agencies interested 
in 3D from 2D. 
 
The strategy we chose was to bundle this advance with several others to persuade NASA 
that a new era of optical telescopes is beginning. Since Galileo, optical telescopes have 
become bigger, optically better, located in better places (e.g. space), and recorded 
electronically rather than by eye. Those were evolutionary, small changes. Can we do 
something both radically different from anything Galileo ever dreamed and better in 
some measurable way than any extension of current telescopes will ever be? We thought 
so and thought that 3D from 2D was one approach. Accordingly, we put together a 
workshop to explore that concept. Ultimately, it will result in a widely read article. IEEE 
Spectrum is considering it at this writing. We offer a summary of the workshop 
conclusions here. It does appear that there is interest within NASA. But with a new 
administrator and no budget, no one will commit anything at this writing. On the other 
hand, Dr. Ravindra Athale at DARPA has expressed great interest and is working with 
the workshop attendees on fleshing out a program. 



 
Of perhaps greater importance, the PI has gotten himself included in a NASA sponsored, 
NASA backed “Planetary Exploration Study” that aims at advising NASA as to how 
to explore Mars one quarter into this century. Some key NASA participants are  
 
NASA Ames Research Center 
Dr. Geoffrey Briggs 
Dr. Butler Hine  
 
NASA Johnson Space Center 
Douglas Cooke     
Brenda Ward      
 
The concepts in our Phase II proposal that arose from our Phase I work are now being 
widely discussed within NASA and seem likely to impact a report NASA will take 
seriously in planning planetary missions. Therefore, we will be in good position to 
insinuate this work into future NASA activities and to insure that its impact will outlast 
the seed money put in by NIAC. 
 

CONCLUSIONS 
During Phase I we made some significant progress toward our long-term goals. In 
particular, we  

1. Showed that 3D from 2D could be done under realistic circumstances in real time 
and 

2. Found two extremely promising ways to continue this part of Vision 2020. 
 
Those accomplishments are the basis for a Phase II proposal that will take Vision 2020 
far enough to assure its continuation by other and its eventual success. 
 
 
 
 
 


