
1

Modeling Kinematic Cellular Automata
Final Report

NASA Institute for Advanced Concepts
Phase I: CP-02-02

General Dynamics Advanced Information Systems
Contract # P03-0984

Principal Investigator: Tihamer Toth-Fejel
Consultants: Robert Freitas and Matt Moses

April 30, 2004

2

Cover page: A Connector Subsystem of a KCA SRS (Kinematic Cellular Automata Self-Replicating
System) preparing a part for assembly. Self-replicating systems could be used as an ultimate form of in
situ resource utilization for terraforming planets.

3

Version: 4/30/2004 2:55 PM

Table of Contents
1. ABSTRACT .. 6
2. SUMMARY...7

2.1. TERMINOLOGY.. 8
3. MOTIVATION AND JUSTIFICATION ... 8

3.1. WHY SELF-REPLICATION?... 8
3.2. WHY NOT? ... 9
3.3. IS MACHINE SELF-REPLICATION POSSIBLE? .. 10
3.4. ARE NANOSCALE SELF-REPLICATING MACHINES POSSIBLE?.. 10
3.5. WHY NOT SELF-ASSEMBLY? ... 11
3.6. WHY OR WHY NOT UNIVERSAL CONSTRUCTORS?.. 12
3.7. WHY THE “GENOTYPE + RIBOTYPE = PHENOTYPE” PARADIGM?.. 13
3.8. WHY MODULAR ROBOTS? .. 13
3.9. WHY KINEMATIC CELLULAR AUTOMATA MODULES? ... 15
3.10. WHY BOTH MACRO AND NANO SCALE?.. 16
3.11. WHY NOW? .. 16

4. RELATED AND PREVIOUS WORK ...16
5. BENEFITS AND APPLICATIONS ...20

5.1. PROGRAMMABLE MATERIALS ... 20
5.1.1. Flow Mode...20
5.1.2. Pixelated Mode... 22
5.1.3. Computation Mode...22

5.2. SEVEN MAGNITUDES IMPROVEMENT .. 23
5.3. INDUSTRIAL EXPANSION ... 24
5.4. SPACE EXPLORATION AND DEVELOPMENT .. 24

5.4.1. Spin-offs... 24
5.4.2. Orbital Operations ... 25
5.4.3. Exploration .. 25
5.4.4. Base Establishment...25
5.4.5. Terraforming.. 26

6. PROJECT GOALS...27
6.1. CHARACTERIZE SELF-REPLICATION .. 27
6.2. QUANTIFY THE COMPLEXITY OF KCA SRS ... 27
6.3. CONFIRM APPROACH... 28
6.4. DESIGN A KCA SRS ... 28
6.5. SIMULATE DESIGNS... 28

7. PROJECT STRATEGY ... 28
7.1. HYBRIDIZE TWO SELF-REPLICATION MODELS .. 28
7.2. KEEP IT SIMPLE ... 28
7.3. MAKE IT COMPLICATED .. 28
7.4. REFINE APPROACH BY ATTEMPTING TO DESIGN... 28
7.5. IMITATE COMPUTERS .. 29
7.6. IMITATE BIOLOGY ... 29

8. ACCOMPLISHMENTS ...29
9. CHARACTERIZING THE SELF-ASSEMBLY AND SELF-REPLICATION SPACE..........30

9.1. 137-DIMENSION DESIGN SPACE .. 30
9.1.1. New Dimensions... 32

9.2. LESSONS FROM BIOLOGY .. 33

4

10. QUANTIFYING THE COMPLEXITY OF KCA SRS..33
11. CONFIRMING OR REFUTING THE APPROACH.. 34
12. PRELIMINARY DESIGN APPROACH. .. 35

12.1. LISTENING TO JOHN VON NEUMANN ... 35
12.2. DR. FEYNMAN’S ERROR.. 35
12.3. THE ESSENTIAL RESEARCH PROBLEM ... 37

13. HIERARCHY ...37
13.1. COMPARING THE MOSES UCP AND THE KCA SRS.. 39

14. SUBSYSTEMS DESIGN REQUIREMENTS.. 40
14.1. TRANSPORTER SUBSYSTEM... 40
14.2. CONNECTOR SUBSYSTEM.. 41
14.3. CONTROLLER SUBSYSTEM .. 43

15. CELL DESIGN REQUIREMENTS... 47
15.1. STRUCTURE .. 48
15.2. ACTUATORS.. 49
15.3. SENSORS... 50
15.4. LOGIC UNIT .. 53

15.4.1. Instruction Set for Logic Unit ... 54
15.4.2. Logic Unit Trade-offs ... 54

15.5. A ROUGH SPECTRUM OF ASSEMBLY METHODS ... 55
15.6. SELF-ASSEMBLY IN MOLECULAR ELECTRONICS ... 56

16. FACET DESIGN REQUIREMENTS .. 60
17. SOFTWARE SIMULATION ...60

17.1. FACET ANIMATION ... 61
17.2. SIMULATION OF TRANSPORTER AND CONNECTOR... 61

18. CONCLUSION ... 64
19. ACKNOWLEDGEMENTS ..64
20. APPENDIX A: SUBROUTINES.. 65
21. APPENDIX B: FUNCTIONALITY MATRICES.. 67

21.1.1. KCA SRS Functionality Matrix Hierarchy .. 67
21.1.2. UCP Functionality Matrix Hierarchy ...67
21.1.3. KCA SRS System Level ...68
21.1.4. KCA SRS Cell Level ... 69
21.1.5. KCA SRS Facet Level ... 70
21.1.6. KCA SRS Subfacet Level... 71
21.1.7. UCP System Level .. 72
21.1.8. UCP Component Level ...73
21.1.9. UCP Subcomponent Level .. 74

5

List of Figures
Figure 1. Utility Foglets (Hall).. 17
Figure 2. Two Shape Changing Robots (Michael) ... 17
Figure 3. XY Cube (Bishop) ... 18
Figure 4. PolyBot (Yim) ... 18
Figure 5. Exponential Assembly (Zyvex) .. 18
Figure 6. JSU Autonomous Self-Replicating Robot... 18
Figure 7. Moses Universal Constructor Prototype (SolidWorks).. 19
Figure 8. Moses Universal Constructor Prototype (plastic).. 19
Figure 9. Flow Mode .. 22
Figure 10. Pixelated Mode.. 22
Figure 11. An early concept of a lunar lander composed of modular nanorobots..................................... 25
Figure 12. A view from Phobos of a terraformed Mars.. 27
Figure 13. Top-down approach... 36
Figure 14. Bottom-up approach .. 37
Figure 15. Gantry-style Transporter.. 40
Figure 16. 12-cell Transporter grasps a pink corner part.. 41
Figure 17. The light blue surface tool is about to be applied to the yellow part, preparing it before

connecting it to another part.. 42
Figure 18. Two Tape Turing FProcessor ... 44
Figure 19. FPGA Editor View of PicoBlaze .. 45
Figure 20. Configurable Logic Block.. 45
Figure 21. Configurable Logic Block (CLB) containing two 16-bit Look-Up Tables (LUTs).................. 45
Figure 22. Alternative Place and Route, and Configuration bitstream generation................................... 46
Figure 23. Unit cell with some tabs and sensors .. 47
Figure 24. Corner structural part... 48
Figure 25. Assembled and disassembled burr puzzle .. 48
Figure 26 Actin-Myosin, Square, and Washer designs of IPMC actuators ... 49
Figure 27. A solenoid built from inert parts... 50
Figure 28. Sensor Switches.. 51
Figure 29. Java output of a 1-D sensor positioning test, with LEDs sliding right on top.......................... 51
Figure 30. Java output of a 3D sensor position test, with two gray LED-embedded cells sliding right 52
Figure 31. Wang tiles with differently sequenced oligonucleotides represented by different colors........ 57
Figure 32. Wang symbolization (wire and transistor) .. 58
Figure 33. Java output of Wang tile implementation of a NAND gate ... 58
Figure 34. Java output of Wang tile implementation of an op-amp.. 59
Figure 35. Two complementary facets .. 60
Figure 36. Facet showing Tab extending... 61

Table 1. Seven Magnitudes Cost Reduction/lb .. 23
Table 2. Accomplishments.. 30
Table 3. Quantifying Complexity of KCA SRS... 34

6

Modeling Kinematic Cellular Automata: Final Report

NASA Institute for Advanced Concepts Phase I: CP-02-02

General Dynamics Advanced Information Systems Contract # P03-0984

Principal Investigator: Tihamer Toth-Fejel

Consultants: Robert Freitas and Matt Moses

April 30, 2004

1. Abstract
General Dynamics Advanced Information Systems has completed preliminary design and modeling
studies for the design of a useful Self-Replicating System (SRS). As shown by NASA’s summer study
Advanced Automation for Space Missions1 and other smaller studies2, the development of SRSs that
constitutes a Universal Constructor3 (UC) could revolutionize future space missions. Using solar power
and in situ resources, a self-replicating lunar factory could build solar cells and other manufactured tools
with which to explore and develop the Moon and other extraterrestrial environments with limited
exponential growth.4 But despite the fact that these studies showed the tremendous power of machine
self-replication, there have been no large-scale attempts to advance the technology to even the
demonstration stage.5 Before this (2003-2004) NIAC funding cycle, only two small efforts have ever
resulted in any non-trivial success in the physical world. Both of the designs lacked significant
functionality compared to an autonomous lunar factory, but they proved that machine self-replication is
possible. The next step is to make self-replicating machines useful.

This report describes the progress made in that direction, specifically the design of a system of Kinematic
Cellular Automata (KCA) cells that are configured as a limited implementation of a Universal
Constructor.

1 Robert A. Freitas, Jr. and William P. Gilbreath (Eds.), Advanced Automation for Space Missions, NASA CP-2255, 1982,
http://www.islandone.org/MMSG/aasm/
2 Georg Von Tiesenhausen and Wesley A Darbro, “Self-Replicating Systems - A Systems Engineering Approach”, NASA TM-
78304, July 1980; Robert J. Coppinger, "The Drexlerian Terraformation of Mars: A New Ark for Humanity",
The Assembler, V4 N1, Q1 1996, http://www.islandone.org/MMSG/9601-news.html; and Gregory Chirikjian, Yu Zhou, and
Jackrit Suthakorn, Self-Replicating Robots for Lunar Development, ASME & IEEE Transactions on Mechatronics in the Special
Issue of Self-Reconfiguration Robots, V7 N4, Dec 2002, http://custer.me.jhu.edu/jackritweb/SRR-Mechatronics-Paper.pdf
3 John von Neumann’s first model for self-replication appeared in “The General and Logical Theory of Automata”, Cerebral
Mechanisms in Behavior - The Hixon Symposium, L. A. Jeffress, ed., John Wiley & Sons, N.Y., 1951. See also his posthumously
published Theory of Self-Reproducing Automata. Edited and completed by A. W. Burks. University of Illinois Press, 1966.
4 Robert A. Freitas Jr., "Terraforming Mars and Venus Using Machine Self-Replicating Systems (SRS)",
Journal of the British Interplanetary Society 36:139-142 (1985), http://www.rfreitas.com/Astro/TerraformSRS1983.htm
5 The only exceptions are: 1. the A-life (Artificial Life) work on mathematical cellular automata models (which rarely addresses
physical self-replication), 2. the preliminary work at the CMU Robotics Lab (personal email, Trey Smith trey@ri.cmu.edu, 16
May 2000), and 3. the two projects described later in this report (by Matt Moses at University of New Mexico, and by Gregory
Chirikjian and Jackrit Suthakorn at John Hopkins University).

http://www.islandone.org/MMSG/aasm/
http://www.islandone.org/MMSG/9601-news.html
http://custer.me.jhu.edu/jackritweb/SRR-Mechatronics-Paper.pdf
http://www.rfreitas.com/Astro/TerraformSRS1983.htm
mailto:trey@ri.cmu.edu

7

Trivial self-replication is not difficult6, but a final goal of autonomous and autotrophic7 self-replication is
certain to be extremely difficult (and possibly not desirable). There is a large unexplored area between
these two extremes that could still be characterized, but this project advanced our knowledge enough to
complete a preliminary design of a physical KCA SRS.

With the advent of nanotechnology, “self-replication is widely viewed as the key to an entirely new
industrial era that may one day replace modern microelectronic systems.”8 In addition, self-replicating
nanotechnology would reduce the price of complex manufactured goods to that of agricultural products.9

Given such potential, it is incredible that half a century after John Von Neumann’s seminal work, and 23
years after NASA’s summer study, we do not have a single useful SRS. Even worse, we had little idea of
the how to quantify the difficulty of useful machine self-replication – until this project attempted to
answer that question.

The answer was surprising: The complexity of a useful KCA SRS is less than that of a Pentium IV.

2. Summary
The best way to predict the future is to create it. Alan Kay

The goals of the Phase I project were to validate the feasibility of revolutionary concepts and to define
major issues with respect to a particular approach to machine self-replication. This “Modeling Kinematic
Cellular Automata” project progressed well toward that goal, specifically with respect to:

• Characterizing the unexplored space between trivial self-assembly and autotrophic self-
replication, by fitting the KCA model into the Freitas/Merkle self-replication topology (and
extending several dimensions of the topology), and by building tools to investigate the self-
assembly of NAND gates and op-amps.

• Quantifying the complexity of a Kinematic Cellular Automata (KCA) Self-Replicating System
(SRS).

• Confirming and correcting many design aspects of a particular approach to KCA SRS.

• Performing requirements analysis of a SRS made of KCA cells configured as a limited-envelope
self-replicating Universal Constructor.

• Designing the SRS hierarchy of System, Subsystem, Cell, Facet, and Part, with special attention
to the problem of closure.10

• Identifying and designing the three crucial Subsystems of a KCA SRS.

• Identifying a method for connecting identical Logic Parts to form a processor; this was found to
be the defining feature of the Controller Subsystem.

6 For example the selectively interlocking block replicators in Lionel S. Penrose, “Developments in the theory of self-
replication,” New Biology, 31(1960):57-66, and Lionel S. Penrose and Roger Penrose, “A self-reproducing analogue,” Nature
179(8 June 1957):1183; http://www.aeiveos.com/~bradbury/Authors/Computing/Penrose-LS/ASRA.html
7 autotrophic - Capable of utilizing simple molecules as the main source of raw materials and of obtaining energy for metabolic
processes from the oxidation of inorganic elements (chemotrophic) or from radiant energy (phototrophic).
8 John Markoff, “I.B.M. Makes Breakthrough in Memory for Computers”, New York Times,
http://www.nytimes.com/library/tech/yr/mo/biztech/articles/17blue.html
9 K. Eric Drexler, "Engines of Creation: The Coming Era of Nanotechnology", 1986, http://www.foresight.org/EOC/
10 With closure, the system’s output includes all parts and information that make up the system’s own structure. Without closure,
the system is unable to self-replicate. See Section 5.36 in R. A. Freitas, Jr. and W. P. Gilbreath, editors. Advanced Automation
for Space Missions: Proceedings of the 1980 NASA/ASEE summer study, NASA-2255, Washington, D.C., 1982,
http://www.islandone.org/MMSG/aasm/AASM53.html#536.

http://www.aeiveos.com/~bradbury/Authors/Computing/Penrose-LS/ASRA.html
http://www.nytimes.com/library/tech/yr/mo/biztech/articles/17blue.html
http://www.foresight.org/EOC/
http://www.islandone.org/MMSG/aasm/AASM53.html#536

8

• Identifying, designing, and animating crucial SRS KCA components.

• Developing tools to investigate 1-D and 2-D placement of LEDs and optical diodes (for inter-cell
communication).

• Simulating the control of two subsystems of Self-Replicating Systems (Transporter and
Connector), which would be controlled by the third subsystem (Controller), concentrating on how
simple aggregates and movements could be combined to form more complex aggregates and
movements.

• Modeling smart-glue types necessary for self-assembly of NAND gates and op-amps.

As work progressed, we refined the list of necessary tasks and identified engineering trade-off points. One
refinement was a de-emphasis on system simulation and an increased emphasis on design. When we
proposed this project, we believed that an iterative approach of gradually moving complexity out of the
environment and into the cell was the best way to achieve this goal, but after further study, we discovered
a better way – working from the bottom up – assembling simple components into more complex ones in a
hierarchical manner.

Within the assumptions made in this study, we found no major roadblocks to building useful Self-
Replicating Systems using Kinematic Cellular Automata.

2.1.Terminology
Terms such as self-replication, self-construction, self-reproduction, and self-assembly all mean different
things to different people. Moshe Sipper and Robert Freitas agree that self-reproduction is an
evolutionary process using genetic operators and mutation. By contrast, machine self-replication is a
purely deterministic, non-chaotic process that results in a structurally and functionally identical copy of
the parent machine.11 Self-assembly requires a critical concentration, reduces entropy, and minimizes
surface free energy.12

Matthew Moses distinguishes between construction processes of fabrication and assembly, where
fabrication involves processes that involve cutting, grinding, inelastic deformation, phase transitions, and
chemical reactions. He limited his device to the assembly of prefabricated components into a copy of the
parent, as did Von Neumann with his kinematic self-replicating model, and as we did also.

3. Motivation and Justification
"The first step to knowledge is to know that we are ignorant" -Socrates

3.1.Why Self-replication?
Self-replication is a manufacturing process that is revolutionary because it is massively parallel. The
most significant implications are at the nano scale. Nanotechnology promises to provide improved
products by precisely structuring materials at the molecular scale, but only in microscopic amounts. To
get significant quantities of molecularly precise material requires massively parallel manufacturing – self-
assembly or self-replication.

Self-replication will provide large amounts of molecularly precise products, reduce the cost by many
magnitudes, and make possible controlled exponential growth of manufacturing facilities.

11 Robert Freitas and Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004 (in
press); http://www.MolecularAssembler.com/KSRM.htm
12 Thomas Waigh, "Molecular Biophysics Study Notes, Lecture 6, Self-Assembly", April 2003
http://irc.leeds.ac.uk/~phy6tw/Molb6.doc.

http://www.MolecularAssembler.com/KSRM.htm
http://irc.leeds.ac.uk/~phy6tw/Molb6.doc

9

Availability of improved manufactured products. Technological advances at the nano scale will
improve the versatility, safety, durability, and sustainability of manufactured products. The National
Science and Technology council’s IWGN (Interagency Working Group on Nanotechnology) report shows
that because nanostructure significantly affects the properties of bulk materials, manufacturing at the
nanoscale will enhance by one or more orders of magnitude both physical properties such as tensile
strength, and chemical properties such as molecular filtering.13 However, to significantly benefit society,
we need large amounts of such advanced materials at a reasonable cost.

Bulk chemistry operates with molecular precision, but the process is uncontrolled at larger scales. The
IWGN report lists nanodevices as only one of seventeen near-term applications,14 despite the fact that the
only way to produce bulk amounts of materials is with massively parallel nanodevices. Self-replicating
molecular devices are the most obvious form of massively parallel nanodevices.

Affordability. Government funding agencies recognize that two issues need to be resolved for modular
robots to be useful at micro and nano scales. First, strategies must be devised to control collaborative
groups of small robotic cells.15 Second, and more difficult, individual robotic cells must be affordable.
Despite Moore’s Law, the cost for the functional portion of semiconductor integrated circuits is still
measured in the millions of dollars per pound. In contrast, because of their ability to self-replicate,
biological products of significantly higher molecular complexity cost under a dollar per pound (see
section 2.5.2.2).

Exponential growth. Researchers have calculated that it could take SRSs only two decades to
completely explore and develop the Moon.16 The capability to make improvements of that magnitude is
simply not available with any other foreseeable technology.

3.2.Why Not?
One of the problems with self-replicating machines is that they represent a technology that is so powerful
as to frighten us into inactivity or relinquishment. Nanoscale replicators especially have this problem
since Michael Crichton’s Prey came out (technologically implausible as it was). The problem with
relinquishment is that if the technology becomes illegal, then its development will occur underground,
where it cannot be regulated, or even observed (so that defensive measures might be taken). It turns out
that it is very difficult to make machines evolve. Machine evolution is a physical implementation of
machine learning, so all that evolving machines do is explore an n-dimensional space of variables in the
same way as do genetic algorithm software techniques (only slower). It is very easy to make machines
not evolve, using techniques very familiar to software engineers; essentially using error detection and
correction codes that are vastly superior to the error detection and correction techniques used in biological
self-reproduction (which also has structures that encourage evolution).

From a technical perspective, is self-replication really the best way to achieve massively parallel
manufacturing? It should be pointed out that traditional macroscopic manufacturing systems expand their
output using existing tools to build other tools without building self-replicating tools. The problem is that
at the nanoscale, in order to manufacture appreciable amounts of product, we need massively parallel
manufacturing that by traditional top-down methods follow Moore’s Law second law: The manufacturing
plants to build each generation improvement costs twice as much as those of the previous generation.

13 M.C. Roco, ed., Nanotechnology Research Directions: Interagency Working Group on Nanotechnology Workshop Report,
September 1999, http://itri.loyola.edu/nano/IWGN.Research.Directions/.
14 ibid., M.C. Roco, ed., Nanotechnology Research Directions.
15 Distributed Robotics http://www.darpa.mil/MTO/DRobotics/index.html
16 R. A. Freitas, Jr. and W. P. Gilbreath, editors., Advanced Automation for Space Missions: Proceedings of the 1980
NASA/ASEE summer study, NASA-2255, Washington, D.C., 1982, http://www.islandone.org/MMSG/aasm/ and Robert A.
Freitas Jr., "Terraforming Mars and Venus Using Machine Self-Replicating Systems (SRS)",
Journal of the British Interplanetary Society, 36:139-142 (1985), http://www.rfreitas.com/Astro/TerraformSRS1983.htm

http://itri.loyola.edu/nano/IWGN.Research.Directions/
http://www.darpa.mil/MTO/DRobotics/index.html
http://www.islandone.org/MMSG/aasm/
http://www.rfreitas.com/Astro/TerraformSRS1983.htm

10

3.3.Is Machine Self-Replication Possible?
In 1996, George Friedman, Research Director of the Space Studies Institute wrote:

“I can’t repeat the many times I’ve been reassured that self-replication was easy. After all, John von
Neumann, way back in the 40’s, clearly defined the logic of self-replication and all we have to do is
implement his “blueprint”. So if self-replication is so easy, where are all the Self-Replicating Systems?…
[Other researchers have said that] self-replication was too difficult, required too long a research schedule,
and was not necessary anyway.” 17

The situation has changed since he wrote those words, with the construction of two different physical
machines that prove the basic concepts of machine self-replication – one by Matt Moses18, and one by
Greg Chirikjian and his graduate students19. Critics point to deficiencies in these two examples, claiming
that “true” machine self-replication is still impossible. For example, Moses’ prototype was manually
controlled, and Chirikjian’s autonomous prototype did not achieve closure with its controller. However,
the former remains an important milestone towards Universal Construction, while the latter proved the
Trival+2 case of machine self-replication.20 As discussed later in this report, we addressed both the issue
of Universal Construction and of designing the Trivial+N case to achieve closure. We also found that a
KCA SRS is less complicated than a Pentium IV chip (see section 10).

Robert Freitas and Ralph Merkle have just finished their book Kinematic Self-Replicating Machines, in
which they cover in great detail the challenges involved with machine self-replication and show that none
are insurmountable.21

3.4.Are Nanoscale Self-replicating machines possible?
There is currently a debate over whether or not nanomachines are theoretically or physically possible.
Referring to Drexlerian nanodevices, a few individuals flatly claim, with no substantiative technical
support, that “machine self-replication is impossible”.22 Given the large number of natural self-replicating
nanomachines covering the planet and the fact that researchers have already manipulated individual atoms
using large scanning probe microscopes – including the positionally-controlled making and breaking of
covalent bonds between individual atoms– this is a rather bold claim for them to make.

Some people, especially Richard Smalley, claim that Drexlerian nanodevices are impossible because they
would have “fat fingers” and “sticky fingers”, without considering that the only difference between
nanorobots end-effectors and enzymes is that enzymes will work in very randomized environments.23 We
considered whether the “sticky finger” and “fat finger” issues might threaten the viability of nanoscale
KCA SRSs, and after research in self-assembly in the Phase I study, concluded that it didn’t matter
whether Drexler or Smalley was right – KCA SRSs would work either way because input parts can be
produced either from Drexlerian nanodevices, from biochemical self-assembly, or from other processes.

17 George Friedman gfriedma@mizar.usc.edu, Research Director, SSI, “The Space Studies Institute View on Self-Replication”,
The Assembler, http://www.islandone.org/MMSG/9612.html#TofC1
18 Matt Moses, A Physical Prototype of a Self-Replicating Universal Constructor, Master’s Thesis, University of New Mexico,
2001, http://home.earthlink.net/~mmoses152/SelfRep.doc
19 Jackrit Suthakorn, Andrew B. Cushing, and Gregory S. Chirikjian, “An Autonomous Self-Replicating Robotic System”,
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003),
http://custer.me.jhu.edu/publication/pdf/auton.pdf
20 The Trival+2 case is one in which a robot assembles 22 parts to build a working copy if itself. In the Trivial+0 case, the parent
machine simply turns on a neighboring machine. In the Trivial+1 case, the parent robot assembles two parts to form a complete
child robot.
21 Robert Freitas and Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004 (in
press); http://www.MolecularAssembler.com/KSRM.htm
22 Radner and Radner, Nanotechnology for Homeland Security,
23 Point/Counterpoint: “Nanotechnology - Drexler and Smalley make the case for and against 'molecular assemblers'”, Chemical
Engineering News, December 1, 2003, Volume 81, Number 48, http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html

mailto:gfriedma@mizar.usc.edu
http://www.islandone.org/MMSG/9612.html#TofC1
http://home.earthlink.net/~mmoses152/SelfRep.doc
http://custer.me.jhu.edu/publication/pdf/auton.pdf
http://www.MolecularAssembler.com/KSRM.htm
http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html

11

3.5.Why not Self-Assembly?
Like self-replication, self-assembly is a type of massively parallel manufacturing.24 Many researchers are
studying self-assembly techniques, with occasional success. For example, both IBM and Motorola are
using self-assembly to produce nanocrystal flash chips in their labs. IBM has found a way to “combine
self-assembly with semiconductor fabrication,” but cautions that they are not chasing self-assembling
circuits.25 Motorola has had enough success to predict commercial release of 45-nanometer nodes by the
second half of 2005.26

Sharon C. Glotzer and her team found that if small tethers are attached to nanoparticles in just the right
place, then predictable self-assembled shapes can be obtained. "If the tethers and nanoparticles either
repel each other or prefer their own kind more strongly than they prefer each other, then thermodynamics
can be exploited to organize the nanoparticles into structures that begin to approach the intricacy of self-
assembled biological structures."27

Buddy Ratner is working on molecular self-assembly strategies that can be used to create molecularly
engineered coatings that sense ultrasound signals and release controlled doses of drugs from underlying
implants. His group has realized that non-specific reactions at material surfaces must be inhibited – nature
does not use non-specific mechanisms.28

Whitesides has demonstrated a number of examples of self-assembly at a sub-macro level.29

Self-assembly requires a critical concentration of parts, and it works by minimizing Gibbs free energy. At
the macro scale, as demonstrated in the 1950s, self-assembling systems may consist of ratcheting 3D
puzzle pieces that could be shaken to self-assemble into larger structures30. At a molecular level, this is
similar to what chemists do – “shake and bake” – so chemistry is actually a form of self-assembly.

Unfortunately, self-assembly processes are susceptible to several limitations:

• Self-assembly is more difficult than it looks.31 People discover this whenever they try to modify
existing self-assembling systems – even the simple Penrose puzzle pieces. Glotzer admits, "the
rulebook for self-assembly needs to be developed…There is no theory that can predict, even
generally, let alone for a specific system, what structures might be assembled and how to do it.
This is the motivation for our work on this problem."32 Predicting self-assembly products is
tantamount to designing protein-folding mechanisms – not as difficult as solving the protein-
folding problem, but nevertheless is quite difficult. The literature leads us to suspect that self-
assembly may require a “new mathematics”, while self-replication only requires new engineering.

24 Note that the field of Parallel Kinematic Machines, involving the paths and capabilities of robots like Stewart platforms, is very
different; See http://www.isr.umd.edu/ISR/accomplishments/025_Kinematic/
25 Nicolas Mokhoff, "Crystals line up in IBM flash chip", EE Times, December 8, 2003,
http://www.eetimes.com/semi/news/OEG20031208S0055
26 David Lammers, "Motorola speeds the move to nanocrystal flash",
EE Times, December 8, 2003, http://www.eetimes.com/semi/news/OEG20031208S0062
27 Mark Puls, “U-M researchers take giant leap toward fulfilling nanotech's promise”, Michigan Small Tech R&D News, Dec 1,
2003, http://www.michigansmalltech.com/News/detail.asp?ContentId=2D89A976-EC08-4342-99CF-DA6E0970E5AC
28 Molecular Bioengineering & Nanotechnology, http://depts.washington.edu/bioe/research/nano.shtml See also Engineered
Biomaterials Research, http://www.uweb.engr.washington.edu/research/index.html
29 George M. Whitesides, et al, “Forming Electrical Networks in Three Dimensions by Self-Assembly", Science, August 18,
2000, V 289 pp 1170-1172, www.sciencemag.org
30 L. S. Penrose, “Self-reproducing machines”, Scientific American, Vol. 200, No. 6, pages 105-114, June 1959. Summary at
http://www.cs.bgu.ac.il/~sipper/selfrep/
31 This was discovered by people who tried to modify the ratcheting 3D puzzle pieces that Penrose designed. See these
selectively interlocking block replicators in Lionel S. Penrose, “Developments in the theory of self-replication,” New Biology,
31(1960):57-66, and Lionel S. Penrose and Roger Penrose, “A self-reproducing analogue,” Nature 179(8 June 1957):1183;
http://www.aeiveos.com/~bradbury/Authors/Computing/Penrose-LS/ASRA.html
32 Mark Puls, op. cit.

http://www.isr.umd.edu/ISR/accomplishments/025_Kinematic/
http://www.eetimes.com/semi/news/OEG20031208S0055
http://www.eetimes.com/semi/news/OEG20031208S0062
http://www.michigansmalltech.com/News/detail.asp?ContentId=2D89A976-EC08-4342-99CF-DA6E0970E5AC
http://depts.washington.edu/bioe/research/nano.shtml
http://www.uweb.engr.washington.edu/research/index.html
http://www.sciencemag.org
http://www.cs.bgu.ac.il/~sipper/selfrep/
http://www.aeiveos.com/~bradbury/Authors/Computing/Penrose-LS/ASRA.html

12

• With self-assembly, the structure of the emergent global system is extremely sensitive to the local
conditions and state of the local structure. Small changes in the final product often require major
changes in the self-assembly process, and conversely, small changes in the process or input can
often produce huge changes in the final product.

• Self-assembly goes against the principles of sound design because the functional requirements of
components are very difficult to separate from each other. Thus, changing one component often
necessitates changing most of the other components also, resulting in a cascade of conflicting
requirements that greatly restrict the search space of possible solutions, perhaps even making
many sets of requirements unreachable.

• Self-assembly does not use von Neumann’s “Genotype + Ribotype = Phenotype” paradigm,
which he proposed even before Watson and Crick discovered the structure of DNA. In other
words, unlike in self-replication, with self-assembly you can’t just change the instructions, keep
the same machines and input parts, and get a predictable output, much less a desired one.

Finally, self-assembly can not implement Universal Construction (except in a limited sense, as in
construction by inspection or copying). This limitation has been demonstrated both macroscopically
during von Neumann’s lifetime,33 and more recently at a molecular scale.34

There is one caveat – if the unit modules of self-assembling systems can form finite state machines, then
they can certainly be made into programmable Turing Machines – thereby satisfying a crucial prerequisite
of Universal Construction. But that approach is very complicated and unlikely.

3.6.Why or why not Universal Constructors?
In the early days of digital processors, the term Universal Computer denoted a machine that could
calculate any possible algorithm, given the proper instructions. By analogy, a Universal Constructor can
build any possible structure given proper instructions and input feedstock.

Given the instructions of the process needed to build itself, a Universal Constructor then becomes self-
replicating. In fact, a Universal Constructor doesn’t need to be universal to be self-replicating – the only
requirement is that the envelope of possible outputs includes each and every one of its components, and
the means to assemble them properly. This is an important distinction because, as in everything else, the
last few percent is the most difficult to accomplish. Therefore self-replication is significantly simpler
than Universal Construction.

Some Universal Constructor SRS concepts are not modular, most notably the “Universal Printer”35

models. We decided against pursuing that model because it does not lead to as many interim useful
devices as the modular model promises to do. In addition, self-replicating machines based on non-
modular fabrication would include many non-assembly processes, such as phase transitions and chemical
reactions. Future work may combine the strengths of both models. For example, two-dimensional arrays
of inkjet nozzles, working at a molecular level, would represent an instance of membrane assembly while
acting as a smart fiber in the absence of input parts.

33 Penrose, L. S.: Self-Reproducing Machines. Scientific American, vol. 200, June 1959, pp. 105-114.
34 Stuart A. Kauffman, Self-Replication: Even peptides do it", Nature, August 8, 1996,
http://www.santafe.edu/sfi/People/kauffman/sak-peptides.html
35 The concept of a “Universal Printer” is similar to 3D printers, solid printers, multiple-material inkjet printers, rapid
prototyping, stereolithography (SLA or STL) fabrication, and Selective Laser Sintering (SLS) that are commercially available or
under development. See also Sawyer Fuller, Eric Wilhelm, and Joseph Jacobson, “Ink-Jet Printed Nanoparticle
Microelectromechanical Systems”, (2002) Journal of Microelectromechanical Systems 11(1): 54-60,
http://www.media.mit.edu/molecular/IEEE-MEMS2-02.pdf . See also Daniel Huang, et al, "Plastic-Compatible Low Resistance
Printable Gold Nanoparticle Conductors for Flexible Electronics", Journal of the Electrochemical Society, vol 150, pp 412-417,
2003. http://www-device.eecs.berkeley.edu/~viveks/Papers/412ECS150.pdf

http://www.santafe.edu/sfi/People/kauffman/sak-peptides.html
http://www.media.mit.edu/molecular/IEEE-MEMS2-02.pdf
http://www-device.eecs.berkeley.edu/~viveks/Papers/412ECS150.pdf

13

Because of its lattice design and the large number of inert parts, Moses’ Universal Constructor Prototype
(UCP) can be considered a very modular and precise “inkjet”, where each “particle” is individually placed
by a robotic arm. As such, it is an important link between the Universal Printer and KCA models of self-
replication.

Universal Constructors are useful, but because they are very difficult to build we used them only as a
conceptual direction, not as a functional requirement. In other words, if an SRS has enough of an output
envelope to include itself, and if that SRS is useful even when not self-replicating, then it is worth
building.

3.7.Why the “Genotype + Ribotype = Phenotype” paradigm?
Von Neumann popularized the idea of a “stored program computer”, and it was very natural to extend this
idea into self-replication as the “Genotype + Ribotype = Phenotype” (GRP) paradigm. The advantages of
the GRP approach include:

• Flexibility: Changes in the “genotype”, or instructions, can result in a wide variety of
“phenotypes” (outputs), without needing to change the ribotype (process mechanisms).

• Controllable: Much of the techniques of software engineering could be applied to SRS problems
(such as error correction).

• Predictable: Small changes in the instructions are unlikely to produce large changes in the output
(this is often not true in self-assembly).

Devices can be self-replicating and do nothing else. Because designing an SRS is difficult enough, we
need adequate justification for the additional effort. At least three such justifications stand out:

• Purely self-replicating systems (i.e. they can build themselves and nothing else) are not useful.

• Non-GRP machine self-replication has already been accomplished, trivially and mechanically for
the first time by Penrose in the 1950s, and more recently autonomously by Chirikjian and his
students.

• If atoms are essentially equivalent to bits, then hardware is essentially equivalent to software. In
other words, matter will become programmable.

Given software bugs and viruses, this is not always a good thing, but all in all, software has generally
improved the quality of human life.

3.8.Why Modular Robots?
Modular robotics have the advantage of being more fault tolerant, more highly structured in their
interactions between individual components, easier to build and maintain, and more flexible than non-
modular kinematic robots. This flexibility makes a SRS composed of modular robots more useful, as
does the fact that the manipulation envelope required is smaller than in the non-modular case. One reason
building and maintaining modular robots is easier is because the types of cell parts are significantly
smaller in number than for a non-modular robot.

The field of modular robotics has exploded in the last few years, with many designs proposed, and a
number of prototypes built. All the designs envision a very large number of identical primitive machines
operating in parallel. Early designs included Josh Hall's Utility Fog,36 Joseph Michael's Shape-Shifting

36 J. Storrs Hall, Utility Fog, Extropy, 3rd (Part 1) and 4th quarter (Part 2), 1994. (There is also a chapter about Utility Fog in
Nanotechnology: Molecular Speculation on Global Abundance, B.C. Crandall, ed., MIT Press).
http://discuss.foresight.org/%7Ejosh/Ufog.html

http://discuss.foresight.org/%7Ejosh/Ufog.html

14

Flexible Robotic System,37 and Forrest Bishop’s Active Mesostructures.38 The important lesson from
Michael and Bishop’s work is that Utility Fog-like behavior can be implemented with much simpler
designs than originally envisioned.

The 1998 NASA Ames summary of applications of nanotechnology39 found only one paper, written by
Toth-Fejel,40 summarizing and analyzing the KCA designs then in existence. Since that paper, Mark Yim
designed and built working polypods at Stanford, continuing with polybots for DARPA at Xerox PARC.41

The goal of most of this research is to make robotic systems more flexible and robust. Some, such as the
Reconfigurable Modular Manipulator System42, have also achieved hardware success, but have
discovered inherent scaling flaws and other problems.

Researchers in modular robotics have at least partially solved many problems that seemed insurmountable
when some of the concepts in this proposal for KCA SRS were first introduced, such as distributed
planning and control for self-configuration.43 Because of the emphasis on design simplicity in this Phase
II project, we will be using centralized planning techniques based on lattice modes of reconfiguration.

Especially when instantiated in large enough quantities at a small enough scale, modular robotic systems
are similar to a number of related concepts (listed by popular usage): Smart Material, Programmable
Matter, Smart Matter, and Programmable Material.

Smart Material is the most popular term, synonymous with Programmable Matter, which is any bulk
substance whose physical properties (piezoelectric and electrostrictive elements, magnetostrictive
transducers, ER fluids, shape memory alloys, fiber optics) can be adjusted in real time through the
application of light, heat, voltage, electric or magnetic fields.44

Smart Matter is another term for micro-electromechanical systems (MEMS), a technology that combines
computers with tiny mechanical devices such as sensors, valves, gears, mirrors, and actuators imbedded in
semiconductor chips.45 KCAs are generally programmable in structure, appearance, and logic, so they are
smarter than most smart matter, though some researchers envision MEMS as eventually becoming
Programmable Material. 46

Programmable Material consists of a flexible substrate consisting of millions of tiny interwoven
programmable fibers (or cells), that can be programmed to assume a large variety of global shapes and

37 Joseph Michael, “Fractal Shape Changing Robots”, ftp://ftp.demon.co.uk/pub/ibmpc/dos/apps/graphics/pm/pm7.zip. See also
“Fractal Robots”, http://www.fractal-robots.com/
38 Forrest Bishop, “The Construction and Utilization of Space Filling Polyhedra for Active Mesostructures”, December 7, 1995,
http: http://www.iase.cc/Nanocube2.pdf
39 Al Globus, David Bailey, Jie Han, Richard Jaffe, Creon Levit, Ralph Merkle and Deepak Srivastava, “Aerospace applications
of molecular nanotechnology”, The Journal of the British Interplanetary Society, volume 51, pp. 145-152, 1998,
http://www.nas.nasa.gov/Groups/Nanotechnology/publications/1997/applications/
40 Tihamer Toth-Fejel, "LEGO(TM)s to the Stars: Active MesoStructures, Kinematic Cellular Automata, and Parallel
Nanomachines for Space Applications," presented at 1996 International Space Development Conference, New York, NY, May
1996, The Assembler, Volume 4, Number 3, Third Quarter, 1996, http://www.islandone.org/MMSG/9609lego.htm
41 Mark Yim, David G. Duff, Kimon D. Roufas, "PolyBot: a Modular Reconfigurable Robot", IEEE Intl. Conf. on Robotics and
Automation (ICRA) 2000, http://www.parc.xerox.com/spl/projects/modrobots/Publications/publications.htm See Polybot
http://www.parc.xerox.com/spl/projects/modrobots/PolyBot/polybot.htm
42 Pradeep Khosla, Takeo Kanade, and Christiaan Paredis,“Reconfigurable Modular Manipulator System”, http://www-
2.cs.cmu.edu/~paredis/rmms/
43 Zack Butler and Daniela Rus, “Distributed planning and control for modular robots with unit-compressible modules”,
International Journal of Robotics Research (to appear).
44 See H. T. Banks, R. C. Smith, Y. Wang, Smart Material Structures: Modeling, Estimation and Control,
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471970247.html and Wil McCarthy, FAQ: Quantum Dots and
Programmable Matter, http://www.wilmccarthy.com/pmfaq.htm
45 Smart Matter, http://whatis.techtarget.com/definition/0,,sid9_gci213005,00.html
46 “MEMS/Smart Matter Research at PARC”, http://www2.parc.com/spl/projects/smart-matter/ See also “Controlling Smart
Matter”, http://www.hpl.hp.com/research/idl/projects/smartMatter/

ftp://ftp.demon.co.uk/pub/ibmpc/dos/apps/graphics/pm/pm7.zip
http://www.fractal-robots.com/
http://www.iase.cc/Nanocube2.pdf
http://www.nas.nasa.gov/Groups/Nanotechnology/publications/1997/applications/
http://www.islandone.org/MMSG/9609lego.htm
http://www.parc.xerox.com/spl/projects/modrobots/Publications/publications.htm
http://www.parc.xerox.com/spl/projects/modrobots/PolyBot/polybot.htm
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471970247.html
http://www.wilmccarthy.com/pmfaq.htm
http://whatis.techtarget.com/definition/0,,sid9_gci213005,00.html
http://www2.parc.com/spl/projects/smart-matter/
http://www.hpl.hp.com/research/idl/projects/smartMatter/

15

enabling a host of novel applications that blur the boundary between computation and the environment.
For example, a car surface might morph at the point of impact, distributing the force during the accident
and then popping back out in its original shape. An airplane wing might dynamically change shape to
resist shear; a programmable assembly line might move objects around by producing ripples in specific
directions; a reconfigurable robot might change its shape based on what function it needs to perform. 47

Programmable material can be thought of as silly putty with muscles, which can flow into any desired
shape. Such morphable materials will start out being used in more traditional devices, making things
more able to do whatever it is that they do, without transforming its essential nature. At the stage of
modular robotic systems however, dramatic changes could happen. A bed could turn into a desk. A
workbench could roll itself up into a blob, and then unroll when needed, placing all the tools in the right
place.48 Or it could morph into the right tool. As shown in Section 5.1, a number of KCA cells acting as
programmable material might flow up against a wall, spread out to cover it, and then pixelate into a wall-
sized television or graphic display.49

3.9.Why Kinematic Cellular Automata Modules?
His first model of self-replication envisioned a robot wandering around in a warehouse of parts, picking
up pieces, and putting them together until it had built a replica of itself. Unfortunately, this kinematic
model was mathematically unwieldy, so Von Neumann came up with the cellular automata (CA) model.
This consisted of a checkerboard of finite state machines, called cells, which would change state
depending on the states of their neighbors. Using this mathematical model, he was able to prove many
important concepts concerning machine self-replication. The problem with this CA model is that it is far
removed from the physical world in which we live.

In CA, the individual cells cannot move – they can only change state – and patterns move across a static
array. The KCA design allows individual cells – not just patterns – to move with respect to each other,
allowing the system to change shape just like the virtual patterns do in CA.

The gap between von Neumann’s two models of self-replication is large50, but Michael Joseph and
Forrest Bishop independently merged the two models in lattice-style modular robotics, also called
Kinematic Cellular Automata (KCA). KCA systems consist of many identical mechatronic modules
organized into a dynamically reconfigurable system. It was expected that a SRS would require a
relatively large number of identical KCA cells, but after completing Phase I, we were surprised by how
few –around a thousand or two, far less than the millions or billions previously surmised (see Section 10).

As noted earlier, modularity has a number of advantages, including increased operations flexibility, more
regular structure, lower parts count, a system envelope much larger than for individual cells, and
decreased complexity. KCA has the additional advantages in that each cell has fixed symmetry and fewer
degrees of freedom (making design, manufacturing, operation, and maintenance simpler than for other
modular robots). KCA systems are more closely integrated than similar systems, such as smart dust, and
could therefore perform a different and wider array of applications. Modularity also has the additional
advantage of enabling hierarchical structures with specialized functions. This led us to develop the SRS-
subsystem-cell-facet-parts hierarchy described in Section 2.2.2.

47 Radhika Nagpal, “Towards a Programmable Material”,
http://www.swiss.ai.mit.edu/projects/amorphous/Progmat/thesis/activecells.html
48 Daniel Rutter, “The programmable matter revolution”, http://www.dansdata.com/gz032.htm
49 as first suggested by Forrest Bishop, "The Construction and Utilization of Space-Filling Polyhedra for Active Mesostructures",
1995, http://www.iase.cc/Nanocube2.pdf
50 Peter Will [will@ISI.EDU] , USC Information Sciences Institute, personal email, Mon 3/20/00 10:57 AM

http://www.swiss.ai.mit.edu/projects/amorphous/Progmat/thesis/activecells.html
http://www.dansdata.com/gz032.htm
http://www.iase.cc/Nanocube2.pdf
mailto:will@ISI.EDU

16

3.10. Why Both Macro and Nano Scale?
Throughout our KCA design process, we kept macro, micro, and nanoscale implementations in mind for
two reasons. First, we wanted an abstract design that would use the same design concepts and control
algorithms between versions. Second, each scale has its own advantages.

Macroscale KCA systems are possible now, and being hyper-flexible and robust, they are useful now.
They can be made using well-known materials and processes, and they can provide a proof of concept
that allows design-ahead for nanotech implementations as molecular input parts come on-line.

MEMS labs produce microscopic parts that would be assembled into microscale KCAs. These parts are
too small to handle manually, but too large to build using bottom-up molecular processes. KCAs at this
scale have a much wider range of applications, but the input parts are expensive.

Nanoscale KCA parts have the advantage of being made of atoms (which are pretty close to perfect) and
molecules. With proper “shaking and baking” and selection, these atoms and molecules can then self-
assemble into high-quality cell parts, which can be assembled into cells using more precise methods.
Finally, there is a potential for a significant financial cost reduction, especially when complexity is taken
into account.

3.11. Why Now?
Trivial self-replication is easy. In addition, almost as soon as the crust cooled enough to support them,
Earth was flooded with biological kinematic self-replicators (just as computer viruses popped into
existence almost as soon as the Internet did). What is difficult to build is a useful SRS. Perhaps our
technology has not yet been adequate to the task. On the other hand, technology has been advancing
aggressively since Freitas typed out the 1980 NASA Summer Study on a light blue IBM Selectric
typewriter (and even more since Penrose built his self-assembling puzzle pieces). Matt Moses showed
with his Universal Constructor Prototype how much one person can do. If a single person can accomplish
so much simply for a master’s degree, then the time is ripe for taking a serious step in useful self-
replication.

4. Related and Previous Work
"Research is to see what everybody else sees and to think what nobody else has thought"

-Albert Szent-Gyorgyi

Often called “The 1980 Summer Study”, the NASA report “Advanced Automation for Space Missions”
edited by Robert A. Freitas Jr. and William Gilbreath was the first major work in self-replication since the
1950s, and involved many researchers meeting at NASA Ames and at Santa Clara University. Originally
meant to be only one small chapter among many advanced automation technologies, the topic of self-
replication captured the attention of many of the participants, who spent about 10,000 man-hours fleshing
out the details of a self-replicating lunar factory. The only problem with this study was that it was rather
short, and much to the disappointment of the researchers was not followed up by additional funding on
such promising work. It involved many brilliant people who did a lot of brilliant work, but it did not last
long enough to build any working devices. Additionally, it depended on pre-PC technology (though that
could be considered that a plus, because to achieve closure, self-replicating machines must be simple and
in a sense rather primitive).

An early proponent of Drexler’s vision of molecular manufacturing, Josh Hall started thinking in 1989
about how large numbers of identical, advanced microbots could form radically new and powerful
products and devices. His ideas resulted in a polymorphic modular system called Utility Fog. The four
biggest problems with Utility Fog are that 1) the design of individual modules (foglets) is actually quite
complicated, and 2) it could not be easily built (even at a macro scale) using top-down manufacturing
methods, 3) it depends on bottom-up methods that don’t exist yet, and 4) it needs a significant amount of

17

software development to write the control software. Then again, many modular robots built since then
have had the same last two problems, though significant inroads have been made since Utility Fog was
first introduced.51

Joseph Michael conceived one of the earliest conceptualizations of modular robotics, and he built a
number of different mechanical implementations. His dynamic “bricks” are significantly simpler, with
fewer degrees of freedom than Utility Fog. The lack of telescoping arms make it more difficult for the
system to change its density, for example, but their simplicity also makes them easier to build. Michael
has proposed many imaginative uses for cubic modular robot systems, including innovative integration
with non-cubic tools to handle tasks that they ordinarily would not be able to do by themselves. His idea
of fractal robots is also unique, but unfortunately, it just pushes the problem of self-replication to lower,
less-accessible levels.

Figure 1. Utility Foglets (Hall) Figure 2. Two Shape Changing Robots
(Michael)

Forrest Bishop’s 1995 paper introduced a cubic modular robotic system with an even fewer parts count
than Michaels’ bricks by limiting the degrees of freedom at each face to only two dimensions, not
allowing z-direction coupling or uncoupling. He had a clear macro design, while describing a path
towards nanoscale implementation.52 Unfortunately, he did not build any physical models.

For his Ph.D. work at Stanford University from 1992 to 1994, Mark Yim designed and built a robotic
system called Polypod. This developed into his work at PARC on PolyBots, where he has built three
generations of reconfigurable modular robotic cells that bend or telescope.53 His team did not consider
self-replication at all, and made it more difficult to consider it, given the powerful processors placed in
each cell, which was connected to its neighbors by a standard CAN protocol.

51 Ying Zhang, Alex Golovinsky, Craig Eldershaw, Mark Yim, “An XML-based Scripting Language for Chain-type Modular
Robotic Systems”, Ying Zhang, Kimon Roufas, Mark Yim, Craig Eldershaw, “Massively Distributed Control Nets for Modular
Reconfigurable Robots”.
52 Forrest Bishop, "The Construction and Utilization of Space-Filling Polyhedra for Active Mesostructures", 1995,
http://www.iase.cc/Nanocube2.pdf
53 Mark Yim, et. al., Modular Robotics Publications, http://www2.parc.com/spl/projects/modrobots/publications/index.html

http://www.iase.cc/Nanocube2.pdf
http://www2.parc.com/spl/projects/modrobots/publications/index.html

18

Figure 3. XY Cube (Bishop) Figure 4. PolyBot (Yim)

Zyvex was founded in 1997 by James Von Ehr, specifically to build a Drexlerian assembler. Currently
they are working in three areas: micromachined silicon, scanning electron microscope and
nanomanipulators, and nanotubes. They developed the innovative idea of Exponential Assembly for
MEMS, though unfortunately this does not use the GRP paradigm, so it is restricted in ways that limited
Universal Constructor and KCAs are not.54

Figure 5. Exponential Assembly (Zyvex) Figure 6. JSU Autonomous Self-Replicating
Robot

Since the concepts in this NIAC study were first made public a few years ago, two types of primitive
SRSs have been built that are fairly close to the goals of this project. They have answered the question of
“Is machine replication possible?” with a qualified “Yes”, though the designs are neither autonomous nor
Universal Constructors. In a milestone achievement, Greg Chirikjian led his students Jackrit Suthakorn
and Andrew Cushing in building the first autonomous self-replicating implementation of the Trivial+2

case (4 parts). Clearly directed towards extraterrestrial applications, this design was built using LEGO

54 Zyvex, http://www.zyvex.com/

http://www.zyvex.com/

19

parts, as recommended by Toth-Fejel back in 1996 because of DFM (Design For Manufacturability) –
minimizing the types of parts used, while maximizing development speed.55 Unfortunately, the JHU
autonomous system had a tiny UC envelope, and did not use the GRP paradigm. In addition, its
dependence on non-replicating jigs, placement in a high entropy environment, and use of a
microprocessor prevented the design from being extended towards self-replicative closure.

The Johns Hopkins robot “fed” on a very rich environment of complex subassemblies, delaying the
problem of how these complex subassemblies would be built. The use of wheeled actuators means that
the design is not easily amenable to automation without increasing the complexity of the environment
(with jigs and guides), nor is it as flexible as the more homogenous modules of KCA.

Figure 7. Moses Universal Constructor
Prototype (SolidWorks) Figure 8. Moses Universal Constructor

Prototype (plastic)

Another success was Matt Moses’ Universal Constructor Prototype56 (UCP), a lattice-type system which
avoids wheels and guides. One of the problems with his ambitious design is that it was manually
operated. In addition, the modular robot arm sagged too much. Two identifying characteristics of the
UPC are that the modules are not homogenous, and that most modules are static. This restricted the
flexibility and usability of the system to manufacturing only – without a supply of input parts, it couldn’t
do very much. By combining Moses’ work with Michael’s, we hoped to discover if this limitation could
be overcome. We couldn’t integrate them as much as we wished, but in attempting to do so, we
discovered the two engineering design dimensions on which the usefulness of SRS depends. Another
crucial lesson from Moses’ work was that instead of building simple machines from complex ones (as are
all other SRS designs to date), the emphasis should be on designing systems in which the component
parts are significantly simpler than the system which they form.

The first comprehensive technical review of field since von Neumann’s work is Kinematic Self-
Replicating Machines co-authored by Robert A. Freitas Jr., a consultant on Phase I of this project, and
Ralph C. Merkle, a professor at Georgia Institute of Technology. This treatise offers a general review of
the voluminous theoretical and experimental literature pertaining to physical self-replicating systems. The

55 Tihamer Toth-Fejel , “LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel
Nanomachines for Space Applications”, presented at 1996 International Space Development Conference, New York City, May
1996, The Assembler, Volume 4, Number 3 Third Quarter, 1996, http://www.islandone.org/MMSG/9609lego.htm
56 Matt Moses, op. cit.

http://www.islandone.org/MMSG/9609lego.htm

20

principal focus is on self-replicating machine systems, specifically kinematic self-replicating machines:
systems in which actual physical objects, not mere patterns of information, undertake their own
replication. The book covers the historical interest in machine self-replication hundreds of years ago, the
brief burst of activity in the 1950s and 1980s, and the revived interest in the 1990s with the emerging
recognition of the feasibility of molecular nanotechnology.57

5. Benefits and Applications
Your imagination is your preview of life's coming attractions. –Albert Einstein

There are three general benefits to the KCA approach to nanomachines self-replication, specifically the
construction of programmable materials, drastic improvements in cost and complexity per pound, and the
enablement of a true nanotechnology revolution.

1. Programmable Materials made of microscale and nanoscale KCA systems provide a new
engineering tool with new properties involving hyperflexibility, pixelation, and logic processing.

2. Seven magnitudes improvement in cost and complexity per unit mass on anything is a good
economic payback.

3. The nanotechnology market is projected to reach a trillion dollars within 10-20 years.58 But at
$300 million/lb, that is small amount of product - less than a ton. Even this small amount will
have an substantial impact, much like the semiconductor industry has an impact with only a few
tons of molecularly imprecise material that it produces per year. Imagine the impact if 10 billion
tons of molecularly precise material were produced annually. But this impact would only be
possible using massively parallel processing, the most obvious method of which is self-
replication.

5.1.Programmable Materials
One of the first conceptualizations of Programmable Materials was called Utility Fog59, and it was not
expected to self-replicate. Similarly, KCAs are still useful even when input parts are too scarce to allow
self-replication. By themselves, KCA cells are simple, with three simple capabilities: motion, optical
message passing, and digital processing. Multiplied by many cells, however, these properties add up to
three system modes: flow, pixelation, and computation.

5.1.1. Flow Mode
In Flow mode, individual and groups of cells move with respect to each other. In one of the simplest
cases, the top layer of two planes of cells moves in some direction (north, south, east west) relative to the
bottom layer, as if it were a linear motor. A more complicated flow example would involve a system
climbing trees or (if it met the power requirements) fly like a bird, dynamically optimizing its airflow as
conditions changed. The following sequence of renderings shows how a small KCA system would flow
towards a wall under the control of the same subroutines (listed in Appendix A) that a physical system
would use.

57 Published by Landes Bioscience, 2004, http://www.MolecularAssembler.com/KSRM.htm.
58 http://www.the-infoshop.com/study/bc18381_nanotechnology.html Personally, I think it’s going to be only a quarter of that
within 10 years; forty times that in 20 years.
59 J. Storrs Hall, Utility Fog, Extropy, 3rd (Part 1) and 4th quarter (Part 2), 1994. (There is also a chapter about Utility Fog in
Nanotechnology: Molecular Speculation on Global Abundance, B.C. Crandall, ed., MIT Press).
http://nanotech.rutgers.edu/nanotech/Ufog.html

http://www.MolecularAssembler.com/KSRM.htm
http://www.the-infoshop.com/study/bc18381_nanotechnology.html
http://nanotech.rutgers.edu/nanotech/Ufog.html

21

22

Figure 9. Flow Mode

 Interestingly, even if the maximum speed between cells were limited to a fairly low number (say, one
kilometer per hour), the top layer of a 10 centimeter slab of one-milimeter sized KCA cells could move at
100 kph – fast enough to dodge bullets and race locomotives.

5.1.2. Pixelated Mode

In pixelated mode, the three communication LEDs of individual cells would glow in a modular
implementation of a display screen. A pound of utility fog could, with access to power and information,
crawl flat onto a wall. If the processing logic and message passing protocols are fast enough, then it
could display a very wide-screen television. This mode requires a high bandwidth, but in a sense it
already has “thick wires” – every cell of the system can forward signals.

The following sequence of renderings shows a small KCA system operating in pixelated mode after
spreading out against the wall:

Figure 10. Pixelated Mode

5.1.3. Computation Mode

Not shown is the computation mode in which KCAs operate: the same way that Configurable Logic
Blocks in FPGAs do. Each cell contains processing and switching logic that can be, in concert with its
many neighbors, dynamically configured into processors and other digital equipment.

23

5.2.Seven Magnitudes Improvement
Self-replication will have an enormous economic impact on nanotechnology. In Table 1, the red upper
line is the cost per pound vs. complexity per pound for traditional, top-down manufactured goods. It
shows how simple products like a $4 one-pound wrench are cheap, but increased complexity per pound
costs more money per pound. The complexity metric is simply an estimate of the number of parts plus the
number of interactions between these parts.

It is not very common to see claims of a 10 million fold improvement in anything, but that is what the
data suggests.

Table 1. Seven Magnitudes Cost Reduction/lb

Consider a Pentium IV computer chip, which costs between $130 and $1200 each, in which the wires and
transistors that constitute the devices with the desired functionality are less than 5 microns thick. That
means that the part of the Pentium that actually does the work costs up to $320 million per pound, with a
complexity metric per pound of 57 trillion. But this is nothing compared to Eigler’s 35 atoms that spelled
out IBM, back in 1990 – the worlds smallest advertisement. If advanced Scanning Tunneling Probes were
free, and if Eigler was paid minimum wage, that ad would have cost about a quadrillion quadrillion
dollars per pound with a complexity metric of over 1024 per pound.

The green lower line represents products that are built using bottom-up methods. If we consider
crystallization as a type of simple, bottom up molecular self-replication, then we can start with rock salt,
which costs less than 15 cents a pound and has a complexity metric around 400. Then we move to
autotrophic organisms – potatoes are much more complex than Pentiums, and a lot less expensive.

With self-replication, the cost of a product drops to the cost of the raw materials that make it up. If input
parts cost the same as electronics-grade silicon ($90/lb), a KCA SRS could conceivably cost $100 per
pound to make, but have a complexity metric per pound of 51 quadrillion, resulting in seven magnitudes
of cost improvement over similar products manufactured with traditional top-down methods. Thus KCA

24

SRSs may offer considerable commercial opportunities, even if the above calculations are in error by
many magnitudes.

5.3.Industrial Expansion
Different scales of KCA systems have different applications. Macro-scale KCA systems may be
commercially viable because of their dynamic hyperarticulation property. The most obvious examples
might be in emergencies like bridge replacement or rescue in collapsed buildings. Macro scale KCAs
also prove the self-replication concept before nanoscale parts come on line, and enable the development
of control algorithms and protocols that will be used at the nanoscale with little change.

At the micro scale, in addition to hyperarticulation at a small enough scale to prototype dynamic 3D
shapes, KCA could also pixelate to display information – or hide physical objects by performing active
camouflage. A microscale KCA systems could compile HDL (hardware description language) – and
immediately implement the result in hardware; it could dynamically reconfigure to efficiently run each
particular software package, or create separate hardware processors for each thread.

Because of each of the modes of KCA systems, microscale applications could fit into the three markets:
rapid prototyping ($175 million to $1 billion/year),60 displays ($48 billion/year),61 and FPGAs ($4
billion/yr) or programmable logic ($34 billion/yr),62 totaling between $52.2 and $83 billion per year.
KCAs also have tremendous potential creating new markets because they can function using more than
one of its three modes at once.

Properly configured KCAs can self-replicate, a capability which can resulting a drop in cost by
magnitudes, depending on the cost of input parts. If the input parts are lithographically produced doped
parts, then they may cost up to $20-300 million/lb. It is unclear if there a market for hyperflexible
microscale KCA systems at that price.

5.4.Space Exploration and Development
As noted above, without self-replication nanotechnology-based products will likely be more expensive
than microtechnology-based products; with self-replication, nanostructured products can become as cheap
as potatoes. This takes into consideration the fact that KCA SRSs are much more limited in capabilities
(and design effort) than Drexlerian assemblers. Thus KCA SRSs will not be able to make or break
arbitrary covalent bonds; the only ones they can establish are some weak ones between parts. However,
that is enough capability to have a tremendous impact.

The benefits of KCA systems can be applied to several classes of Space missions: orbital operations,
exploration, base establishment, and terraforming, plus potential spin-offs.

5.4.1. Spin-offs

The robustness, hyperflexibility, and multiplicity of modes of KCA systems will make them a great spin-
off for use on Earth. For example, hyperflexibility would be useful whenever forces need to be applied in
tight and hard-to-access spaces. A box of KCA cells could replace large number of specialized tools. A
mobile and reconfigurable wall could be used to align solar cells or shades, and create ad-hoc shelters and
workspaces. Small KCA cells could form reconfigurable furniture of arbitrary color and shape, and even
smaller cells could form arbitrary sized TV and computer monitors.

60 Ed Grenda, “The Rapid Prototyping Industry”, http://home.att.net/~castleisland/ind_10.htm
61 Shane Rau and Stanley Jeong, “IDC Forecasts 56% LCD Panel Revenue Growth in 2004”,
http://www.idc.com/getdoc.jsp?containerId=pr2004_03_25_180752
62 Brian Hoard, “FPGAs and Society”, 03/12/2001,
http://cseserv.engr.scu.edu/nquinn/ENGR300Winter2001/researchprojects/BHoard/bhoard_research_project.html

http://home.att.net/~castleisland/ind_10.htm
http://www.idc.com/getdoc.jsp?containerId=pr2004_03_25_180752
http://cseserv.engr.scu.edu/nquinn/ENGR300Winter2001/researchprojects/BHoard/bhoard_research_project.html

25

5.4.2. Orbital Operations

KCA systems could be used for exploration in a number of ways. A hyperflexible tool would reduce the
launch weight for space station, lunar, and planetary missions by substituting for many standard and
different tools. Orbiting spacecraft could be protected from space junk if the debris was detected early
enough (a few seconds), and a crumple-column of cells quickly assembled along the line of impact. A
collection of KCA cells could extrude itself into a long robotic arm of whatever length was required for a
particular task; the arm could be made as thick as needed to generate the forces required.

5.4.3. Exploration

The modularity of KCA systems makes them very robust – even a 50% loss of cells would only slow
them down. In addition, hyperflexibility makes it possible to accomplish missions that would otherwise
be unthinkable. For example, surface transportation might include climbing cliffs or oozing through
crevices. The figure below is from the NSS/Foresight Policy Paper on Space and Nanotechnology, which
was co-authored by Toth-Fejel.63

Figure 11. An early concept of a lunar lander composed of modular nanorobots

5.4.4. Base Establishment

KCAs could be used in a wide variety of structural and dynamic uses, and different sized KCA cells
would be useful in different applications, from hyperflexible tools and extraterrestrial resource processing
to extreme surface transportation.

63 Tihamer Toth-Fejel and Tom McKendree , NSS Position Paper on Space and Molecular Nanotechnology,
http://www.islandone.org/MMSG/NSSNanoPosition.html and http://www.foresight.org/Updates/Update20/Update20.5.html.
This graphic was rendered on a computer that cost more than his house, using a piece of software that cost more than his car.
Now his daughter owns a own computer just as powerful, on which she can produce similar graphics on free software. Moore’s
Law marches on, and NASA missions plans to take advantage of it, as evidenced by their support of NIAC.

http://www.islandone.org/MMSG/NSSNanoPosition.html
http://www.foresight.org/Updates/Update20/Update20.5.html

26

Macroscale KCA systems could be used structurally to set up temporary or permanent housing, very
portable and flexible ladders, emergency scaffolding, and very flexible cherry pickers. Dynamically, they
could clear and level land, dig trenches, build berms, transport materials, conduct surface mining
operations, and provide surface transportation over extremely rugged ground –modular vehicles have the
high degrees of freedom necessary to climb cliffs and negotiate crevasses.

Microscale KCA systems could be used wherever FPGAs and video displays are used, though both more
flexibly.

Intermediate sizes (1 to 5 mm) might be used as hyperflexible tools; dynamically such as a drill, socket
wrench, floor jack, and fan, or statically such as a screwdriver, container, or pliers. Slow-moving
intermediate-sized KCA systems could form shape-shifting furniture to reduce the necessary living area
and mass.

Chris McKay, Robert Zubrin, and others64 have been long-time proponents of designing exploration
missions that would utilize in situ resources that spacecraft would encounter at their destinations. More
ambitiously, Gerard O'Neill and others have proposed using extraterrestrial resources for use on Earth,
most notably in the form of Solar Power.65

In situ extraterrestrial resource utilization would lower mission launch weights, and make possible large,
expanding outposts that would be less dependent on Earth resources. KCA systems could help by
providing the hyperflexible structural skeletons and general-purpose actuators for mining and chemical
processing, though they would be dependent on non-KCA tooling to provide the correct “shake and bake”
environments that could produce non-KCA products in addition to the self-assembled input parts of
which the KCA cells are made.

5.4.5. Terraforming

More ambitiously, NASA’s charter directs the agency to not just explore the extraterrestrial environment,
but also to expand life into it. While this vision is theoretically possible using current technologies, it is
extremely expensive. A simple lunar base would cost billions of dollars, and it is economically untenable
to settle the Moon and other planets with appreciable numbers of people using existing industrial
techniques. Even if launch costs were lowered to a few dollars per pound, as geosynchronous and other
tethers might achieve, it would not be enough to enable an exodus to Space on the scale of the
immigration to the New World for the last 300 years.

One way that proposes to solve this dilemma involves terraforming, a holy grail of spreading life into the
Solar System. Originally, this idea was proposed using successive seedings of special biological
lifeforms that would slowly change a planet’s environment to resemble that of Earth. The money and
time involved in such a multi-generational project would make it unlikely to gain much support.
However, self-replicating systems66 would lower the price and time of terraformation by many
magnitudes, making it politically and economically feasible.67

64 Robert A. Freitas Jr., “A Self-Reproducing Interstellar Probe,” J. British Interplanet. Soc. 33(July 1980):251-264;
http://www.rfreitas.com/Astro/ReproJBISJuly1980.htm
65 Gerard K. O'Neill, “The World's Energy Future Belongs in Orbit”, Trilogy January/February 1992,
http://www.ssi.org/energy.html
66 Robert A. Freitas Jr., "Terraforming Mars and Venus Using Machine Self-Replicating Systems (SRS)",
Journal of the British Interplanetary Society 36:139-142 (1985), http://www.rfreitas.com/Astro/TerraformSRS1983.htm
67 Because of atmospheric physics, some terraforming projects are rather fanciful. For example, because the escape velocity of
gas molecules is greater than the gravity of the Moon, any atmosphere we give it will eventually bleed off, so we must essentially
cover the surface with greenhouses. On the other hand, with the lower gravity and carbon-nanotube silicate composites, they
would be so big as to not be noticeable. See Martyn Fogg, Terraforming: Engineering Planetary Environments, SAE
International, Warrendale, PA, 1995.

http://www.rfreitas.com/Astro/ReproJBISJuly1980.htm
http://www.ssi.org/energy.html
http://www.rfreitas.com/Astro/TerraformSRS1983.htm

27

Figure 12. A view from Phobos of a terraformed Mars

Used with permission © David A Hardy www.astroart.org

6. Project Goals
The only way of finding the limits of the possible is going beyond them into the impossible.

-Arthur C. Clarke

There were five goals we wanted to reach:

6.1.Characterize Self-Replication
First, we wanted to characterize the unexplored area between trivial and autotrophic self-replication.

The trivial case (Trivial+0) is when one robot turns to a neighboring robot and turns it on. The Trivial+1

case is when the first robot attaches one piece to the neighboring robot and then turns it on. The
autotrophic case (approximately Trivial+24) is when we plant one machine on Mars and using only
sunshine and dirt, the machine makes copies of itself out of rocks, taking two decades to cover the entire
Martian surface with solar cells, robots, computers, and other useful devices (such as KCAs). In between
these two examples are many of difficult concepts that need to be explored and characterized.

6.2.Quantify the complexity of KCA SRS
Second, we wanted to quantify the complexity of a Self-Replicating System made of Kinematic Cellular
Automata. How difficult is to build an SRS using this hybrid approach? Many researchers have assumed
that machine self-replication is difficult.68 While it is not easy, this Phase I research project showed that
an SRS may have less complexity than a Pentium. A single KCA cell certainly does, by many
magnitudes.

68 BEAM Robotics Philosophy, http://nis-www.lanl.gov/robot/ and http://people.ne.mediaone.net/bushbo/beam/FAQ.html, and
op. cit., Martin and Resnick.

http://www.astroart.org
http://nis-www.lanl.gov/robot/
http://people.ne.mediaone.net/bushbo/beam/FAQ.html

28

6.3.Confirm approach
Third, we wanted to confirm or refute different aspects of the approach. We had some pre-conceived
ideas of how to go about it – undoubtedly, some of our ideas were wrong, and we needed to find out
which ones they were.

6.4.Design a KCA SRS
The best way to find out which of our ideas were wrong was to jump in and design an KCA SRS, the
components and control software, and see what dead ends we run into.

6.5.Simulate designs
Finally, the best way to find out if a design is realistic (other than actually building it, which gets
expensive) is to simulate it in 3D modeling software.

7. Project Strategy
"You've got to be very careful if you don't know where you're going, because you might not get there."

-Yogi Berra

In any research project, it is highly likely that the initial conceptions require rigorous validation and often
significant revision. As the task of clarifying details progresses, we needed a guiding strategy to guide us
on the right track. Our strategy had a few strong concepts by which to guide our research.

7.1.Hybridize two self-replication models
First, the overall thrust of this research project was to hybridize Von Neumann’s Kinematic and Cellular
Automata models of self-replication, because that is the most promising next step towards useful physical
devices at macro, micro, and nano scales.

7.2.Keep it simple
Second, our strategy was to keep the design as simple as possible. One way to do this was by minimizing
the degrees of freedom, for example by not allowing rotation at a cellular level. Other methods including
minimizing the amount of disorder in the surrounding environment, and minimizing part count and part
type count.

7.3.Make it complicated
Third, make it complicated. This sounds contradictory, but we wanted to maximize the envelope of
possible assembly processes and we wanted to maximize the functionality of programmable material.

It looks like we’re setting up ourselves for failure with these two opposing goals, but the tension between
these two opposing goals will force optimal solutions by teasing out the essential requirements.

7.4.Refine approach by attempting to design
Fourth, we planned to refine the design approach by just going ahead and design the darn things at as
detailed a level as possible. One can only do so much planning and strategizing, and for innovative
projects an effective strategy is to use the act/learn paradigm, popularized by business guru Tom Peters as
“Ready, Fire, Aim!”69

69 Michael Schrage, Serious Play: How the World's Best Companies Simulate to Innovate, (1999) Forward by Tom Peters, quoted
in Bruce Held, et. al., Seeking Nontraditional Approaches to Collaborating and Partnering with Industry,
http://www.rand.org/publications/MR/MR1401/MR1401.ch5.pdf

http://www.rand.org/publications/MR/MR1401/MR1401.ch5.pdf

29

We attempted to design components, an appropriate instruction set, and software models using sound
design principles, such as isolating functional requirements from specifications – what we want to do
from how we’re going to do it. In addition, we planned to isolate each component and its function from
the other components. This prevents changes in one part from affecting every other part in a cascade
effect.

7.5.Imitate computers
The reason we decided to imitate computers whenever possible is because they are fairly well understood.
This turns out to include concepts from cellular automata, of course, and also error correction and
computer manufacturing. This strategy is also an obvious one to take because the same mind that came
up with the Von Neumann architecture is the same one that came up with the kinematic and cellular
automata models of self-replication, indicating that there may be some overlap of the cognitive space
involved.

7.6.Imitate biology
Finally, we planned to imitate biology, because it provides us with a working example of self-replication,
even if we don’t quite understand that process. LISP inventor John McCarthy guided his pioneering work
in artificial intelligence by trying to make his systems achieve desired functionality by using any and
every possible technique at his disposal. But he added, “If I stray to far from the way Mother Nature does
it, I get nervous.”70

8. Accomplishments
I always turn to the sports page first, which record people's accomplishments.

The front page has nothing but man's failures.
- Chief Justice Earl Warren

In keeping with our original goals, we explored the solution space of self-replication, quantified the
difficulty, refined our approach, developed some preliminary designs, and then modeled them.

Goal Accomplishment

Characterize
unexplored area

Explored multi-dimensional engineering design space

Quantify the
difficulty

Discovered to be not trivial, but less than a Pentium IV

Confirm or
invalidate approach
details

Refined approach
 SRS must be useful
 Established hierarchy of Subsystems, Cells, Facets, & Parts
 Essential Elements are Transporter, Connector, & Controller
 Low-level simpler than high-level
 Assess top-down vs bottom-up
 Self-Assembly for input Parts
 Depend on standard concepts
 Universal Constructor is approach, not goal

Design a KCA SRS Developed requirements
Completed preliminary design

70 John McCarthy, personal conversation, Stanford University, 1986.

30

Goal Accomplishment

Simulate designs Modeled simulations
 Sensor position
 NAND gate and op-amp self-assembly
 Facet
 Transporter and Connector

Table 2. Accomplishments

While much of our effort was spent in trying to design or simulate our designs, most of our
accomplishments actually involved confirming or invalidating various aspects of our approach. This is
what the iterative “Ready, Shoot, Aim” process is supposed to do – it allows you to learn from your
mistakes early, while they are still inexpensive.71

9. Characterizing the self-assembly and self-replication space
9.1.137-Dimension Design Space

Freitas and Merkle have shown that the field of self-replication has a huge design space with 137 multi-
valued properties that may be grouped into 12 primary design dimensions72: Replication Control,
Replication Information, Replication Substrate, Replicator Structure, Passive Parts, Active Subunits,
Replicator Energetics, Replicator Kinematics, Replication Process, Replicator Performance, Product
Structure, and Evolvability.

71 Susan Nord, “Olson Uses Creative Thinking to Expand Services”, Small Business Times, May 24, 2001
72 Robert A. Freitas Jr., Ralph C. Merkle, Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown, TX, 2004;
http://www.MolecularAssembler.com/KSRM.htm (it only had 116 dimensions at the beginning of this study).

http://www.MolecularAssembler.com/KSRM.htm

31

The simple action of categorizing an SRS design in this space exposes weaknesses, strengths, and
neighboring designs that may lead to improvements. It also exposes the areas of the design space that
might be extended. In the course of this study, each the items in red in the figure above were addressed, to
a greater or lesser extent, as it applied to our design:

Replication Control – We spent a considerable amount of time on this dimension when we designed the
Controller subsystem, as described later in this report.

Replication Information – We understood this dimension as the process information needed to assemble
the parts into a cell. After realizing how similar most of the assembly steps were, and after programming
the flow simulation, we concluded that if properly designed with reusable subroutines, a fairly small
program (much smaller than a typical operating system) could run the SRS.

Replication Substrate – As pointed out in the NASA summer study, a robot in a rich enough environment
(a roomful of robots that simply need to be turned on) represents a trivial exercise in self-replication.
Originally, we intended to begin with a similar environment, but then we switched to a bottom-up
approach. We assume that self-assembly techniques can build simple, molecularly precise input parts,
and that these parts can be arranged like assembly-line cartridges so that their initial positions are
consistently the same, and are replaced as they are consumed.

Replicator Structure – The general structure of a KCA SRS is determined by the fact that it is a modular
robot. Other requirements (especially the drive towards simplicity and minimal parts count) further
restricted the design.

Passive Parts – We realized that an important axiom of bottom-up SRS design is that all parts are
passive. Otherwise, it’s not really a bottom-up approach, and the design is only pushing the mystery to a
lower level. This dimension also contains sub-dimensions, and we investigated Parts Count, Scale,
Types, Preparation, and Complexity. Whenever possible, we tried to minimize parts type count, while
keeping in mind that part size must be larger than the precision of the sensors and actuators that must
sense and manipulate them.

Active Subunits – Because we devised a hierarchy of subunits, this dimension applies to KCA SRS at a
number of levels. We were especially concerned with Subunit Complexity because the simpler the
subunits, the easier the KCA SRS could achieve closure.

Replicator Kinematics – As mentioned earlier, our drive towards simplicity resulted in a reduction in the
Manipulation Degrees of Freedom. In addition, the rather nebulous dimension of Assembly Style
compared construction-style with manufacturing-style assembly. In the “construction-style assembly”,
many small devices are used to work on or in a large structure, analogous to constructing a building.
Many assembly devices can work in parallel to build up a surface, and the use of larger building blocks
can dramatically speed the rate of assembly. In contrast, “manufacturing-style assembly” parts and
workpieces are manipulated and transported within larger mechanisms.

Positional Accuracy – A KCA SRS must be able to sense and manipulate parts with greater precision than
the part size, so positional accuracy was a concern, resulted in us building two versions (1D and 2D) of a
Java application, as described later.

Replication Process – Since we use the GRP paradigm of self-replication (and thereby avoiding the host
of difficulties resulting from non-GRP paradigms), the replication process issues are essentially identical
to those of the replication information dimension.

Evolvability – We do not want self-replicating systems to be evolvable, though it turns out that it is fairly
easy to design for non-evolvability. Between Bill Joy, Prince Charles, and Michael Crichton, there is

32

enough hysteria in the media about evolvability. Besides, as Doug Lenat explained73 and Jordan B.
Pollack74 physically demonstrated with genobots it’s pretty difficult to evolve anything really new -
though there is no question that genetic algorithms are good for hill-climbing in large search spaces.

The Foresight Institute has developed a set of guidelines for handling this new technology safely.75 In
order to follow the Foresight Guidelines, we designed our SRS to avoid evolvability. This means that:

• The energy supply will not be readily available in the ecosystem; The SRS must not use either ATP
or solar energy, but low-voltage DC electricity, which is a safe and efficient alternative. That way it
could not compete against existing life forms. This design will make out-of-control replicators
virtually impossible – as likely as cars escaping into the forest and living off tree sap.

• Machines that use an abstract Genetic-Ribosomic-Phenotypic (GRP) paradigm of self-replication will
employ positional, non-random movements to achieve higher precision than both biological GRP
systems and all self-assembled systems, which use random perturbations to move the system to a
lower energy state but higher entropy state. In addition, since the genetic information is digital,
software correction codes will fix duplication and transcription mistakes, driving the rate of mutations
per replication to an arbitrarily low number, using enough binary parity digits for an instruction set
that is currently estimated to be 500 kilobytes long.

• The implementation of Universal Constructor self-replicating systems as analogous to Universal
Computers (instead of blindly following the biological DNA/RNA/Ribosome/protein approach) has
two advantages that make it easier to build, easier to control, and more useful:

1. It doesn’t require solving subsets of the protein folding problem (with significant portions of
information implicitly hidden in the code).

2. It is more understandable by humans, and therefore more controllable (e.g. it makes more
sense to say “Grab entityA with Cartesian robot arm and move it to x, y, z” than “Bind
entityA to the end of a ribosome, and add four different sugars that make up twenty four
different types of amino acids, having calculated how this string of amino acids will affect
each other with van der Waal’s and electromagnetic forces so that entityA ends up at x, y,
z”).

9.1.1. New Dimensions
In the course of this study, we discovered three new dimensions:

Replicator Designability – It is obvious in retrospect, but after running down some blind alleys, we
realized that even if an option isn’t optimal, we should use existing standard whenever possible. In
addition, the lack of designability is why we avoided self-assembly techniques.

Subunit Hierarchy – We found that a designable SRS doesn’t just have N subunits of N types – it has a
whole hierarchy of subunits.

Subunit Complexity Monotonicity – In many SRS designs, the internal complexity of each component is
greater than that of the assembly as a whole. In other words, the more detailed the design, the worst it
gets. It should be simpler at each level, not more complicated.

Other dimensions we just ignored, in some cases because of design decisions made earlier: For example,
for Energetics, we assumed that we would plug a power supply into a wall socket.

73 Lenat, D.B., Brown, J.S.: Why AM and EURISKO appear to work. Artificial Intelligence 23 (1984) 269-294.
74 Jordan Pollack, Dynamical & Evolutionary Machine Organization, http://www.demo.cs.brandeis.edu
75 Foresight Guidelines on Molecular Nanotechnology, http://www.fores ight.org/guidelines/current.html

http://www.demo.cs.brandeis.edu
http://www.foresight.org/guidelines/current.html

33

9.2.Lessons from Biology
Bacteria should give us an idea of the number of parts that self-replication requires. Working with
Mycoplasma genitalium, the simplest known cell, researchers at The Institute for Genomic Research
(TIGR) have discovered that the minimum number of protein-coding genes required for cellular life in the
laboratory is between 265 and 350. Surprisingly, this minimal gene set includes about 100 genes of
unknown function, drawing into question a prevailing assumption that the basic molecular mechanisms
underlying cellular life are well understood.76

Since we are trying to imitate the self-replicative property of life, and there are many design decisions that
need to be made, a productive strategy would use the same methods used by carbon-based life. But there
are a number of exceptions:

• Biological systems usually have multiple uses (often accidental or fortuitous) for each
component, tending in the direction of evolvability and making deterministic design more
difficult.

• The system must be easy to understand, easy to design, easy to construct, and easy to control.

• The systems must not evolve.

'One-pot' reactions is the dream of molecular computation. It would be nice to be able to throw a bunch of
reactants together and watch them self-assemble without getting involved in purification, separation, or
other complicated poking and prodding. The problem is that setting up the kinds of chemical reactions
that are rich enough to support computation is difficult to do without cross-talk between molecules. Cells
manage to decrease cross-talk by compartmentalizing chemical reactions physically with membranes or
'virtually' by segregating them in the nanoenvironments of enzymes.77 This is an important lesson to keep
in mind when utilizing self-assembly, and it argues in favor of the Drexlerian paragigm of positional
assembly.

10. Quantifying the Complexity of KCA SRS
Table 3 also contains a wrench, an automobile, and a Pentium IV. While Table 1 emphasized the cost
advantage of self-replicating systems, per pound as it related to cost, Table 3 only considers the
complexity as a metric of parts plus interactions, regardless of size or weight. A wrench contains four
parts that each interact with two other parts. A car contains between has 15,000 and 100,000 parts.78 This
wide variety of parts count is partially because different people define parts differently. In addition, a
low-end 1998 automobile has six microcontrollers, while a high-end 2003 automobile has 106
microcontrollers.79 We assume that each part interacts with three other parts.

76 “Scientists at TIGR Uncover the Minimal Number of Cellular Genes Needed for Life”, Dec. 8, 1999,
http://www.tigr.org/new/press_release_minimal.html See the December 10 issue of Science for the technical paper. See
http://cellbio.utmb.edu/cellbio/ribosome.htm for an introductory explanation of how ribosomes work.
77 Paul Wilhelm Karl Rothemund, "DNA and molecular computation", http://www.ugcs.caltech.edu/~pwkr/dna_comp.html
78 Michael Kuhndt. Bernd Bilitewski, Wolfram Krewitt, Werner Niederle, “Towards Reduced Environmental Burden of
Mobility: Improving the Automobile Life Cycle: A CHAINET Case Study”, Report, 2nd Draft,
http://www.leidenuniv.nl/cml/ssp/projects/chainet/case-auto.html. See also Richard Stallman, “Software Patents - Obstacles to
Software Development. 2002, quoted in Wen-Hsin Lin, “The Trouble with Software Patents”, The CPSR Journal, Summer 2002,
http://www.cpsr.org/publications/newsletters/issues/2002/Summer/lin1.html
79 Ross Bannatyne, “Microcontrollers for the Automobile”, Micro Control Journal, 2003,
http://www.mcjournal.com/articles/arc105/arc105.htm

http://www.tigr.org/new/press_release_minimal.html
http://cellbio.utmb.edu/cellbio/ribosome.htm
http://www.ugcs.caltech.edu/~pwkr/dna_comp.html
http://www.leidenuniv.nl/cml/ssp/projects/chainet/case-auto.html
http://www.cpsr.org/publications/newsletters/issues/2002/Summer/lin1.html
http://www.mcjournal.com/articles/arc105/arc105.htm

34

A Pentium IV contains between 54 million and 125 million transistors, depending on the version,80 each
with three connections each, though often in ICs transistors are used instead of resistors.

Only a dozen KCA cells are needed per Transporter Subsystem, though two to four Transporters are
necessary to connect two parts. Therefore, we need 48 cells for each Connector, plus another 50 for an
operating floor. The open source PicoBlaze processor requires 152 CLBs, one per cell. However, cells
must also act as interconnects, so it may take twice as many KCA cells to actually form the Controller. If
we’re limited to NAND gates, op amps, wires, one-dimensional actuators, and 3D structural parts, there
are slightly more than 300 parts per cell, of about 20 different types, each type with its own Connector.

Twenty Connectors and corresponding substrate at 98 cells each, plus a 300 cell Controller results in 2300
cells, or 690,000 parts. Each cell interacts with six neighbors, while each part has a functional relationship
with three to six neighboring parts, giving a total complexity metric between 700K and 4.8M,
significantly below the Pentium IV’s complexity metric of half a billion.

Table 3. Quantifying Complexity of KCA SRS

The astounding thing about this finding is that by these measurements, a KCA SRS is significantly less
complicated than a Pentium IV. Such simplicity is surprising given that a KCA system has many more
degrees of freedom than today’s rapid prototyping tools. In addition to imitating stereolithography
products, a KCA system can change shape dynamically, pixelate, and imitate the field-programmability of
gate arrays – all at the same time.

11. Confirming or Refuting the Approach
As mentioned earlier, much of our time expended on design turned out to confirm or deny certain aspects
of our approach. Specifically these discoveries stand out:

• The SRS must be useful
• Hierarchy of Subsystems, Cells, Facets, & Parts
• Transporter, Connector, & Controller
• Low-level simpler than high-level
• Top-down vs bottom-up
• Self-Assembly for input Parts
• Depend on standard concepts

80 Anand Lal Shimpi, “Does the 0.13-micron Pentium 4 spell success?”, http://www.anandtech.com/showdoc.html?i=1379&p=5,
and Johan De Gelas, “Prescott: The New Pentium 4 Reviewed”, Ace's Hardware, February 2, 2004,
http://www.aceshardware.com/read.jsp?id=60000315

http://www.anandtech.com/showdoc.html?i=1379&p=5
http://www.aceshardware.com/read.jsp?id=60000315

35

• Universal Constructor is the direction, not the goal

Each will be described in the sections below.

12. Preliminary Design Approach.
Research is what I'm doing when I don't know what I'm doing. - Wernher von Braun

One of our strategies was to keep everything simple, and then add complexity.

Through this design effort, we have ruthlessly minimized the degrees of freedom to three; for example we
do not allow rotation. This is an effort to minimize entropy and maximize structured order by reducing
capabilities (and may seem counterintuitive) but as a functional comparison below shows, the
simplification justifies the process.

12.1. Listening to John Von Neumann
One way to think about Von Neumann’s Universal Constructor, especially when it is implemented at the
nanoscale, is as his Universal Computer applied to atoms instead of bits.81 If that is the case, then it is
logical to make the analogy explicit, with Assembly, Transport and Control all being subfunctions of the
self-replication function.

Universal Computerà Universal Constructor:

• ALUà Connector Subsystem
• Memory/Busà Transporter Subsystem
• Controlà Controller Subsystem

Von Neumann devised a simple architecture for machine replication, consisting of four parts:

• a constructor that could build any machine when given explicit blueprints for that machine

• a blueprint copier

• a controller that controls the actions of the constructor and the copier, running first one, and the
other

• a set of blueprints that explicitly describing how to build a constructor, a controller, and a copier82

We didn’t quite ignore his architecture, but we are assuming that the blueprint is electronic, so the copier
is a trivial software process. What we really did is split the constructor into its two essential functions,
transporting parts and connecting parts.

Another way to think of a Universal Computer is as a Turing machine, so perhaps a Universal Constructor
is simply a type of 3-D Universal Turing Machine. An advanced version of Moses’ UCP might look
something like that. But computers are not designed to look like Turing machines for a good reason:
efficiency.

12.2. Dr. Feynman’s Error
Dr. Feynman’s approach to nanotechnology was to build the smallest possible robot using current
technology, and then to use that robot to build even smaller robots, ad infinitum in a top-down, fractal
approach83. Our approach was similar, except that instead of being fractal in 3D space, as illustrated here,
we planned to be fractal in complexity space.

81 Will Ware, “Algorithmic Generation of Molecular Structures”, 1998, http://willware.net:8080/agj/ag.html.
82 John von Neumann, Theory of Self-Reproducing Automata, A.W. Burks, ed., University of Illinois Press, Urbana IL, 1966.
83 Richard Feynman , “There's Plenty of Room at the Bottom”, http://www.zyvex.com/nanotech/feynman.html

http://willware.net:8080/agj/ag.html
http://www.zyvex.com/nanotech/feynman.html

36

We planned to first model the trivial case, in which one robot turns
to a neighboring robot and turns it on (called the Trivial+0 case). The
next research step would then move the complexity out of the
environment and into the cell by doubling parts count, so that the
first robot assembles the two halves of the neighboring robot and
then turns it on (the Trivial+1 case). We would continue to iterate in
this way, next modeling a robot assembling the four quarters of the
neighborhood robot and turning it on (i.e. the Trivial +2 case), etc.
This is a very natural, logical approach, almost everyone thinks this
way. Chris Phoenix had a similar approach with his self-replication
model,84 as have many others dealing with similar research
problems.85

Figure 13. Top-down approach

Many researchers do this “pulling a cat out of a hat” trick (we tried), but then when they get to the end,
where the guts of the matter are, it’s a mystery. It’s not a complete mystery, because we all know that it
has to stop with atoms, but then the mystery is how to get there.

A better approach would start at the bottom and work up. This approach at first may seem to be a lot
more difficult, but that is how Mother Nature does it, and that is what was revolutionary about Drexler’s
approach to nanotechnology. At any rate, the Trivial+2 case has already been accomplished by NIAC
Fellow Greg Chirikjian and his students.86

84 Chris Phoenix, “Design of a Primitive Nanofactory,” J. Evol. and Technol. 13(October 2003);
http://www.jetpress.org/volume13/Nanofactory.htm
85 This error is well illustrated in Dr. Seuss’s “The Cat in the Hat Comes Back”. In order to solve a problem, the Cat in the Hat
looks for help from increasingly smaller cats A, B, C, through Z. These cats, recursively hidden in each other’s hats, all make
things worse and worse. But Cat Z has a mysterious “Voom” in his hat that at the end cleans up the total mess. “What is
Voom?” asks the author, “I don’t know, but it sure cleans up snow!” ISBN: 0394800028, 1958.
86 Jackrit Suthakorn, “Part III: Self-Replicating Robots,” in Paradigms of Service Robotics, Ph.D. Dissertation, Department of
Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, February 2003, pp. 167-236. See also Jackrit
Suthakorn, Andrew B. Cushing, and Gregory S. Chirikjian, “An Autonomous Self-Replicating Robotic System”, Proceedings of
the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003),
http://custer.me.jhu.edu/publication/pdf/auton.pdf

http://www.jetpress.org/volume13/Nanofactory.htm
http://custer.me.jhu.edu/publication/pdf/auton.pdf

37

Figure 14. Bottom-up approach

12.3. The Essential Research Problem
By the second month of this project, we had realized that we should listen to John von Neumann more
and Richard Feynman less. In other words, since von Neumann’s Universal Constructor is approximately
his Universal Computer applied to atoms instead of bits,87 we decided to make the analogy explicit, with
Assembly, Transport and Control all being subfunctions of the self-replication function. The KCA hybrid
cells would constitute the next level in the hierarchy. Because these cells are cubic, they contain
significant repeating symmetries, which we call facets. These active facets need to be built out of simple
inert parts, not out of complicated assemblies. In addition, we inverted Feynman’s original top-down
approach to nanotechnology to more closely imitate Mother Nature’s bottom-up approach. Two
demonstrations of the top-down approach have already been accomplished.88, 89

So the essential research problem in Self-Replication is this:

In a very well-ordered environment, assemble simple inert parts into symmetrical facets that form
modular dynamic cells that are configured as Connector, Transporter, and Controller subsystems
to make up a Self-Replicating System (SRS).

13. Hierarchy
In the course of our design, we developed a hierarchy and a corresponding vocabulary to describe it. A
self-replicating system is the top-level entity. It consists of Subsystems, which are made up of Cells,
which are made up of Facets, which are made up of Parts, which are made up of self-assembled Sub-
parts. At the bottom, everything is made of molecules. In hindsight, this hierarchy makes perfect sense
because it made possible and clarified some our design discoveries and approach refinements. One of the
advantages of a hierarchy is that it allows us to isolate design issues to a single level.

87 Will Ware, “Algorithmic Generation of Molecular Structures”, 1998, http://willware.net:8080/agj/ag.html
88 Jackrit Suthakorn, “Part III: Self-Replicating Robots,” in Paradigms of Service Robotics, Ph.D. Dissertation, Department of
Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, February 2003, pp. 167-236. See also Jackrit
Suthakorn, Andrew B. Cushing, and Gregory S. Chirikjian, “An Autonomous Self-Replicating Robotic System”, Proceedings of
the 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003), http://custer.me.jhu.edu/publication/pdf/auton.pdf
89 Matt Moses, "A Physical Prototype of a Self-Replicating Universal Constructor", Master's Thesis, University of New Mexico,
2001, http://home.earthlink.net/~mmoses152/

http://willware.net:8080/agj/ag.html
http://custer.me.jhu.edu/publication/pdf/auton.pdf
http://home.earthlink.net/~mmoses152/

38

Biology KCA SRS Computer
Horse Self-replicating System: Useful Processor
Brain and
Muscles

Subsystems:
Transporter, Connector, and Controller

Bus/Memory, ALU,
and Controller

Cells Cells: Cubic devices with only
three limited degrees of freedom

Organelles Facets: Symmetrical implementation

Finite State Machines,
Shift Registers,
Adders, and
Multiplexers

Proteins Parts: Inert, simpler than higher levels NAND gates

Genes Self-assembling Subparts:
Wires, Transistors, actuator components Transistors, Wires

Molecules Molecules Molecules

First, just like a work horse, an SRS must be useful when it is not replicating. It turns out that a KCA
system is very useful because it can flow, pixelate, and emulate digital devices.

Second, the principle subsystems of a KCA SRS are Transporter, Connector, and Controller. This
division resulted from requirements analysis and was inspired by making an analogy with von Neumann’s
idea of a stored program machine, which contains a Bus and Memory, an Arithmetical Logic Unit, and a
Controller.

At the next level, KCA cells inherit the properties of kinematic robots: they are devices that move. They
also inherit the properties of cellular automata: modular finite state machines with well-defined and
limited interaction with neighbors. Historically most cellular automata are squares, so KCAs in our three-
dimensional world extend into a cube.

Cells have six faces and each face has four Facets: so the Facet level takes advantage of our symmetric
implementation.

Facets are made of relatively inert Parts, which are simpler than higher level components.90

The sixth level has to do with self-assembling Subparts: i.e. the wires and transistors that make up NAND
gates and op-amps, and the components that make up actuators.

Finally, molecules are at the bottom of everything.

We applied Suh’s systematic method for designing complicated systems91 to the essential research
problem in self-replication and were pleased to discover that it fit well with the GRP (Genetic-Ribosomic-
Phenotypic) model. GRP maintains the independence of functional requirements by separating the
genetic information function, the ribosomic construction function, and the phenotypic structural function
(unlike in self-assembly, in which the three functions are not distinct). SRS requirements filtered down to
lower levels, imposing constraints on lower-level functionality, developing into the following outline of
requirements:

Self-Replicating System
Builds a working copy of itself
Assembles, does not fabricate
Implements a very limited Universal Constructor with small envelope of products
The system must be useful, applicable for a wide variety of uses even when starved

90 The idea of inertness is not quite accurate, since NAND gates, op-amps, and primitive actuators are not quite inert. The
important idea is that subcomponents should be simpler or have fewer degrees of freedom than the components they make up.
91 Suh, N.P., "The Principles of Design", Oxford University Press, Inc., 1990

39

Subsystem
Connects parts together.
Transports parts from where they are stored to where they are assembled.
Controls which parts go where, and when.

Cell
Locks with or separate from neighboring cells.
Moves in relation to neighboring cells.
Executes messages.
Stores and forwards messages.

Facet
 Translate global xyz coordinates into local uv coordinates.
 Reduce parts count by using symmetry.
 Pass Cell requirements to Part level.
Part

Structure – provides space and keeps functional parts from interfering with each other.
Actuators – act physically to lock, unlock, and move relative to neighboring face.
Sensors – detect changes in location and communicate between cells and w/ outside
world.
Logic – decodes incoming signals into electromechanical actions and messages.

13.1. Comparing the Moses UCP and the KCA SRS
We compared the functionality matrices between the Moses UCP (Universal Constructor Prototype)92 and
the current KCA SRS and came up with some important conclusions:

1. There exist structural levels that were not clearly defined earlier.

a. Between the Subsystem and the Cell, there exist semi-permanent structures such as a base
lattice, platforms, walls, and channels.

b. Between the Cell and the Part, due to symmetry of cells and directionality of the
interfaces between them, there is an important concept of two kinds of facets, each of
which has two way symmetry and is modular across the face (though there are only four
of these subfacets).

2. Cells might need to specialize. For example, most cells would only need to move in unit steps.
But fine motion control (to 1% of cell size), which is only necessary for those cells touching parts
and tooling, is possible by adding analog to digital converters to the sensors, at a cost of added
complexity for those cells.

The functionality matrices for the KCA SRS, from the System level to the Facet level, are listed in
Appendix B. These include two options at the cell and facet levels – one in which the cells are completely
identical, and another in which the cells are specialized.

The matrices are meant to help define some of the trade spaces for a practical self-replicating machine,
and to help provide an approximate first-cut concept that can later be refined and evolved into a detailed
and functional design. Functionality matrices compare functional requirements with the structures,
components, or features they implement. The matrices in Appendix B are presented in a hierarchy;
starting with large assemblies of parts and high level functions, working down toward specific functions
and detailed features of individual parts.

92 Matt Moses, op. cit.

40

14. Subsystems Design Requirements
At an essential level – and this is most obvious when implemented at the nanoscale – Von Neumann’s
Universal Constructor is really his Universal Computer applied to atoms instead of bits.93 If we make this
analogy explicit, then because the memory stores information in a computer, then the equivalent system
in the constructor is the cartridge that stores input parts. The data bus becomes the Transporter subsystem
that moves Parts. The Arithmetic Logic Unit becomes a Connector Subsystem that connects Parts. And
finally the Control Unit of a Universal Computer becomes the Controller Subsystem of a Universal
Constructor, which decides which Parts go where, and when. One of the important things we discovered
is that while this Controller should be Turing equivalent, it should emulate a standard processor, and run a
standard operating system and language.

So each of the three subfunctions of self-replication – transporting, connecting, and controlling parts –
needs to be implemented by a subsystem composed of identical cells.

But should they be identical? What are the advantages and disadvantages?

The advantages are:

• Mother Nature did it this way – hence the gains in efficiency must be greater than the loss in
robustness.

• Less parts need to be self-assembled (logic-specialized cells don’t need to move; large-movement
specialized cells don’t need seven sensors per face per direction for fractional movement; moving
cells don’t need to run configurable logic blocks; Cells running look-up tables don’t need
switching capabilities; cells that are routing signals don’t need to have look-up tables)

• Most differentiated cells would be individually simpler and more efficient (in terms of energy,
matter, information) than the undifferentiated cells that must do everything.

The disadvantages are:

• Mother Nature didn’t quite do it this way – self-replicating bacteria appeared before multi-
cellular organisms.

• Needs more than one set of instructions.

• More than one type of cell must be designed.

14.1. Transporter Subsystem
The purpose of the transporter is to move things. Originally, we envisioned something like a gantry
robot, as it made it clear that the working envelope of the system was much larger than each individual
cell.

Figure 15. Gantry-style Transporter

93 Will Ware, “Algorithmic Generation of Molecular Structures”, 1998, http://willware.net:8080/agj/ag.html

http://willware.net:8080/agj/ag.html

41

Such a design would work, but Transporter Subsystem can be much simpler. It consists of less than 12
cells, two of which grab parts, one at a time, and three on the bottom which actually move the subsytem
around on a “base plane” of about 50 cells. In the figure below, the pink corner part is grasped by a blue
and a red cell. These colors do not represent anything special – they are simply colored that way so that
they are easier to see.

Figure 16. 12-cell Transporter grasps a pink corner part

14.2. Connector Subsystem
The connector subsystem94 is analogous to the Arithmetic Logic Unit, is to perform an operation on two
entities so that a single entity results – in this case, its job is to connect Parts.

A wide range of sizes would require different assembly techniques. The connector might use the
following possible mechanisms to connect parts:

• Glue or epoxy – spillage might clog moving parts, or result in imprecise joining. Also, it doesn’t
scale well. Would ampoules solve the spillage problem? Would the epoxy technique scale down
analogously to surface preparations that would induce covalent bonding?

• Tangs – possibly too weak. Moses’ prototype had this problem, and LEGOs™ have the same
weakness. On the other hand, all beams have this problem. Design methods that keep beams from
bending beyond specified limits may ameliorate this problem.

• Burr puzzle techniques are very complicated to design and self-assemble, other than for simple
shapes.

• Expanding ridge joints are too complicated to self-assemble.

• Sewing, weaving, and tying – out-of-the-box idea that may lead to better ideas.

• Nails and screws – assembly process may be too complicated with only three degrees of freedom.

94 In previous reports, we referred to this subsystem as the assembler subsystem. But because of the resulting confusion with
Drexlerian assemblers, we changed the name of this subsystem.

42

• Soldering is a different method because it uses electricity instead of kinematics as a joining technique.
However, it may give off too much waste heat, and spill solder into delicate places.

• Bolts – assembly process has too many degrees of freedom, and parts too complicated for self-
assembly95.

• Interlocked wedges – bolt threads are rotated wedges; burr puzzles interlock.

• Blind pop rivets – Multiple cells may generate enough force, but the method doesn’t scale well.

• At a molecular scale, van der Waals force could be used with great effect – e.g. a binding force of 2.7
nN/nm2 for diamond plates in contact (~0.2 nm separation)96 – in which case the connector system
need only place the surfaces together. However, nanoscale surface contaminants – including stray
molecules from the external environment – can significantly reduce the binding force. A single
monolayer of contaminant air molecules of dimension ~0.2 nm physisorbed between the two surfaces
would reduce the aforementioned binding force to 0.33 nN/nm2.97 Studies on geckos have shown that
their spatulae utilize van der Waals force, and that artificial spatulae can be built.98 We expect that
such mechanisms will be used in nanoscale KCAs.

The purpose of the Connector is to connect parts together, and after studying the above list, we decided
that the best approach to connection depends on the scale. At a macroscale, the preparation tool might be
an ampoule of glue, or of epoxy if both parts are prepared. At the nanoscale (where individual subparts
may consist of as few as 2000 atoms), the preparation tool would need to prepare each part in other ways.
In fact, there may need to be a number of preparation steps per part, such as scraping off a hydrolyzed or
oxidized layer of atoms before immediately applying an inert layer which in turn might be selectively
replaced by a layer high-strength binding molecules.

Figure 17. The light blue surface tool is about to be applied to the yellow part, preparing it before
connecting it to another part.

Originally, we had envisioned a Transporter Subsystem that moves parts from a storage/feed cartridge
and hands then off to a Connector Subsystem. But the distinction between rather arbitrary because the

95 PushInOneWayScrew.jpg
96 K. Eric Drexler, Nanosystems, John Wiley & Sons, New York, 1992, p. 66
97 ibid.
98 K. Autumn, et.al., “Evidence for van der Waals adhesion in gecko setae”, PNAS, September 17, 2002, V99N19,
http://www.lclark.edu/~autumn/Papers/02-AutumnPNAS_Cvr.pdf

http://www.lclark.edu/~autumn/Papers/02-AutumnPNAS_Cvr.pdf

43

connector is actually made up of a number of transporters. The transporter is composed of 12 cells that
move one part around. A Connector contains a Transporter for each part that it connects, plus one
Transporter for each preparation tool.

14.3. Controller Subsystem
Research is the process of going up alleys to see if they are blind. - Marston Bates

The Controller Subsystem determines which parts and which cells go where, and when. The requirements
are:

• Implement the commands listed in Appendix B (a complex task).
• Keep the Logic Parts in the individual cells as simple as possible.
• Avoid manual control – the Moses UCP was manually controlled.
• Achieve closure with controller – the Johns Hopkins SRS was controlled by a non-self-replicating

microprocessor.
• Keep automatic control flexible – if the controller is not a Turing-equivalent reprogrammable

computer, then product and process cannot be easily changed, similar to self-assembly processes.
• Insure that the SRS product is useful – Penrose’s self-assembling puzzle pieces cannot do useful

tasks.

When we realized the magnitude of effort necessary meet the almost contradictory requirements, we
forced ourselves to re-examine the justification for each of them. We especially re-examined the
necessity for Turing-equivalence.

Looking to nature, we see that the kernel of biological self-replication is the ribosome, not DNA. It is
true that DNA makes copies of itself, but its double helix/paired nucleic acids structure makes it really a
case of self-assembly. For a strand of DNA to make a copy of itself is rather pointless from an
engineering standpoint. However, a ribosome can make anything that its messenger RNA tells it to make
(i.e. it is a limited-envelope Universal Constructor). Using the tiny folding forces, the proteins then self-
assemble in a process that is, for all practical concerns, computationally intractable. To get past the
protein-folding reverse-kinematic problem, the controller needs to direct the assembly of products with
humanly understandable precision, necessitating more instructions of a less complex nature. This
indicated that the controller must be Turing equivalent.

If the SRS needed to be useful, then it needed to be humanly understandable and flexible, and that
clinched the argument for us: the Controller Subsystem must – at a theoretical level – be Turing Machine
equivalent. The immediate next question that results from this engineering decision is, “What is the
optimal design for a Turing machine that is spread out among many identical subunits?”

NIAC Fellow Greg Chirikjian told me that for his autonomous self-replicating prototype, he could replace
his Lego Mindstorms processor with nine transistors, and the unit would still self-replicate. This seemed
like it would be a great achievement, because then the system would be a lot closer to closure, since it’s a
lot easier to put nine transistors together on a circuit board than a million transistors on an integrated
circuit chip. His solution was a perfect example of elegant simplicity.

For similar reasons, we thought that our Controller subsystem should also be as simple as possible. We
spent quite a bit of time looking at the simplest implementation of a Turing machine, running the simplest
possible language, BrainF (also called BF) – the smallest Turing-equivalent language in existence,
having only eight instructions.99 Unfortunately, BrainF does not have any commercial support, or much
community support or tools, such as is available for a minimal operating system such as TinyOS.100 But

99 Frans Faase, “An introduction to programming in BF”, http://home.wxs.nl/~faase009/Ha_bf_intro.html
100 TinyOS, a component-based OS for the networked sensor regime, http://webs.cs.berkeley.edu/tos/

http://home.wxs.nl/~faase009/Ha_bf_intro.html
http://webs.cs.berkeley.edu/tos/

44

BrainF was so much minimalist language that it seemed to fit our needs, so we started designing a
minimal processor to run it. First we had to chose an architecture.

Figure 18. Two Tape Turing FProcessor
The advantage of Von Neumann architecture is that the software can be self-modifying. But few
programs have ever self-modified successfully, except for Lenat’s AM and Heurisko, and to some extent
genetic algorithms (and a pair of Toth-Fejel’s master’s thesis programs, HE and SHE).101 Modern
languages distinguish between data and instructions – in hardware, this is the Harvard architecture.102

Another popular computer architecture, in which a vector or array of processors run the same
mathematical operations on a large number of data elements very quickly, is not applicable to this project.
Because of our requirement that KCAs don’t evolve, and because it simplifies the architecture, we chose
the Harvard architecture.

Before going to far, we realized that almost every home and car in the country has processors in them –
why should we design an entirely new processor when this planet was practically crawling with them?
Was self-replication that different? Then we realized that the Logic Unit of the cell did not need to be
Turing equivalent – it only needed to execute a limited truth table, and do a little extra that could be
combined with identical modules to form a processor.

Failed? I haven t failed. Now I know 10,000 things that don t work! Thomas Edison

So for our approach, the minimalism of BrainF was a blind alley. A long blind alley. We thought long
and hard before ignoring the inner voice that kept repeating the mantra, “Keep it simple, keep it simple”.
Finally, we took heart in Thomas Edison’s words, though in this case, we know one thing containing
10,000 pieces that doesn’t work.

The main problem was that making the design very elegant and simple was making the design process
itself overwhelming for the scope of this project – especially when facing what is essentially a solved
problem. In retrospect, for our approach, the answer was easy: Standardize. Make the controller a

101 Tihamer T. Toth-Fejel, “Self-Test: From Simple Circuits to Self-Replicating Automata”, Master’s Thesis, University of Notre
Dame, 1984.
102 Harvard architecture, http://en2.wikipedia.org/wiki/Harvard_architecture

http://en2.wikipedia.org/wiki/Harvard_architecture

45

standard processor. Make it run Linux. Make it run Java, and write the self-replication instructions in that.
It doesn’t matter that we were trying to do something that hasn’t ever been done before. In fact, then it
became even more important to stand on the shoulders of giants. In this case, we stood on the shoulders of
FPGA manufacturers, by using the Configurable Logic Block shown below, of which 120 are needed for
the tiny 8 bit processor PicoBlaze, or 800 for a 32 bit processor MicroBlaze.103

Figure 19. FPGA Editor View of PicoBlaze Figure 20. Configurable Logic Block

At a practical level, the Controller Subsystem needs to run high-level languages such as Java on a
standard operating system such as Linux – or else humans could not program it. The specific problem is
that processor chips are very complex, not modular, and unlikely to be manufactured by self-assembly
techniques in the foreseeable future. The solution to this general problem of building a processor out of a
reconfigurable array of simple logic units is to use FPGAs (Field Programmable Gate Arrays).

There are many types of FPGAs, with different designs, and different modularized gate sets that are
implemented in an array. A common design includes a large array of Configurable Logic Blocks (CLBs),
each containing two 16-bit Look-Up Tables (LUT) plus assorted flipflops and multiplexers, as shown in
the figure below.

Figure 21. Configurable Logic Block (CLB) containing two 16-bit Look-Up Tables (LUTs)

103 MicroBlaze http://www.xilinx.com/events/docs/esc_sf2001_microblaze.pdf

http://www.xilinx.com/events/docs/esc_sf2001_microblaze.pdf

46

The Xilinx XC 3000 Configuration Logic Block contains a 32 bit SRAM, two flipflops, ten
programmable Muxes, 37 wires, and twelve connections, which can probably be implemented with about
200 NAND gates.

An advantage of using CLBs that are functionally identical to those in existing implementations104 of
FPGAs is that commercially available VHDL (VLSI Hardware Description Language) interpreters can
automatically specify the necessary connections between the CLBs, and also specify the LUTs
initialization bitstring. VHDL definitions for processors exist, notably the IBM PowerPC 405, the 32-bit
MicroBlaze, and the 8-bit PicoBlaze. There are also definitions for many soft processor peripherals105,
meaning that the software for a huge class of Utility Fog configurations already exists (when it is used in
computational mode instead of flow or pixilated mode).

Note that the Open Source PicoBlaze only requires 76 slices (two CLBs per slice), or 152 cells. However,
cells must also act as interconnects, meaning that it may easily take twice as many KCA cells to actually
form a PicoBlaze. Unfortunately, the PicoBlaze is restricted to a 256 byte program (though there are
some work-around solutions). So the more powerful MicroBlaze is a more likely solution to actually run
a full self-replication program. Of course, the MicroBlaze requires many more KCA cells.

In the KCA SRS, the Transporter or Connector Subsystems move, but the Controller Subsystem does not.
In this way, the Controller Subsystem is similar to the Embryonics BioWall built at the Swiss Federal
Institute of Technology.106 But while the BioWall consists of 5700 FPGAs that non-kinematically
emulate evolution, ontogenesis, and learning, the Controller Subsystem implements only enough internal
Configurable Logic Blocks (CLBs) to emulate a single processor, which easily fits inside a single FPGA.

The current proprietary FPGA process needs open-source Place and Route software and open source
Configurable Logic Blocks that make up the Controller - It doesn't have to be fancy, but we don't want to
“manually” rewire a processor more than once. While this is not an easy task, it is not insurmountable –
there is even a place and route competition on the web.107

Figure 22. Alternative Place and Route, and Configuration bitstream generation

104 Bhushan Shah and Suman Anna, “Design of a XC3000 Configuration Logic Block”,
http://www.personal.psu.edu/users/s/u/sua111/vlsimain.html
105 Processor Central, http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Processor+Central
106 Gianluca Tempesti and Christof Teuscher, “Biology Goes Digital,” Xcell Journal 47(Fall 2003):40-45;
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_biowall47.htm.
107 Vaughn Betz and Jonathan Rose, “VPR: A New Packing, Placement and Routing Tool for
FPGA Research”, 1997 International Workshop on Field Programmable Logic and Applications,
http://www.eecg.toronto.edu/~vaughn/papers/fpl97.pdf and http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html

http://www.personal.psu.edu/users/s/u/sua111/vlsimain.html
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?title=Processor+Central
http://www.xilinx.com/publications/xcellonline/xcell_47/xc_biowall47.htm
http://www.eecg.toronto.edu/~vaughn/papers/fpl97.pdf
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html

47

15. Cell Design Requirements
The requirements for individual cells depend on whether or not they are identical. If they are, then the
functional matrix is trivially simple. For increased efficiency, both in terms of construction and operation,
non-identical cells may be preferred. There is an increased computational load to make sure that the right
type of cell is at the right place at the right time, but electrons are generally easier to manipulate than
entire cells, indicating that specialization of cells is a good thing. On the other hand, specialized cells
cannot substitute for each other, meaning that the system would not be as robust. In any case, it would
require a design effort outside the scope of this project.

The unit cell is the foundational unit of a KCA SRS. It has different components that need to:

• Hold everything together without letting parts interfere with each other
• Move and stop in three dimensions x y z
• Lock and unlock with x y or z faces
• Detect cell position with respect to its neighbor
• Receive incoming messages
• Send messages to neighbors (and single pixels as output)
• Decode and execute incoming messages
• Accept, store, and forward messages from/to ±x/y/z faces

Figure 23. Unit cell with some tabs and sensors
These can be separated out and implemented by structure, actuators, sensors, and logic, as follows:

Requirement Structure Actuators Sensor/LED Logic Unit
Keep parts from interfering with each other
Move and stop in three dimensions ±x/y/z
Lock and unlock with ±x, y, or z faces
Detect cell position WRT neighbor
Receive incoming messages
Send messages to ±x/y/z faces
Decode incoming messages
Store and redirect messages

The unit cell in the figure below shows some of the important concepts of the KCA cell. The LEDs and
optical diodes by which intercell communication takes place are in dark and light red, green, and blue.

48

The tabs that lock into the slots of adjoining cells are sometimes visible, as are the teeth that move them.
Note that there are two different types visible. In both cases, one set of tabs provides power to all the
cells, while the other provides a ground.

15.1. Structure
Requirement: Lock tightly to neighbor in one or two dimensions; move with respect to neighbors.

Implementation: A cube is one of the simplest designs, so for the following requirements, we assume that
each cell is a cube with six faces. Each face would have to implement the following:

• Extend and retract two or four tabs per direction per face

• Each slot would need to linearly move (on command) any tab placed into it.

Structure meets the requirements for filling space and positioning parts to limit interactions to only
desired ones., such as being able to lock tightly to neighbors in none (for unlock), one, or two dimensions.
It is also necessary to specify the complementary (if any). We examine Active Velcro108 and found that it
would work great for locking and unlocking with neighbors, but it wouldn’t allow the cells to move with
respect to each other.

One important general decision concerns structure material and solidity. If parts are
hollow, they will be lighter and more complicated to fabricate (this will be true even if
they are provided via directed self-assembly). One exception would be the use of
hollow structures when the application requires light, macro-sized stereolithographed
parts (in which case the parts aren’t self-assembled bottom-up).

Figure 24. Corner structural part

A secondary consideration has to do with joining techniques. As shown in the figures below, 3D burr
puzzles109 can be used to build fastener-free connecting structures. However, it is difficult to design
arbitrarily complex self-fastened pieces, and it is not clear how to create such complex self-fastened
pieces using primitive self-assembly techniques. If a design methodology could be developed, perhaps the
Wang tile approach described later could be used to self-assemble the burr pieces, though with such
sophisticated techniques, it might be easier to self-assemble the entire structure.

Figure 25. Assembled and disassembled burr puzzle

108 Diann Brei, “Proof of Concept Investigation of Active Velcro for Smart Attachment Mechanisms”,
http://www.darpa.mil/dso/thrust/matdev/chap/briefings/timchap2000day2/brei_velcro.pdf
109 For a great introduction, see “The Burr Puzzles Site”, http://www.research.ibm.com/BurrPuzzles/ and
http://home.comcast.net/~billcutler/stock/rectilinear.html

http://www.darpa.mil/dso/thrust/matdev/chap/briefings/timchap2000day2/brei_velcro.pdf
http://www.research.ibm.com/BurrPuzzles/
http://home.comcast.net/~billcutler/stock/rectilinear.html

49

15.2. Actuators
Requirement: Transform Electrical to Mechanical Movement

Implementation: The following choices exist:

• Electromagnetic motors: Don’t scale well to micro and nano scales.

• Piezoelectrics: Require high voltages (100V) and offer little displacement (~1 µm/mm) though some
impressive linear piezoelectric motors are available. Unfortunately, their electronic drivers are very
complicated.

• Shape Memory Alloys: slow reaction speed; require thermoelectric sources and a heat sink.

• F0F1-ATPase biomotors110: These are powered by ATP instead of electricity, so theoretically they
could be compete with human cells in vivo. Another drawback is that biomotors are sensitive to
temperature, pH, and need a liquid environment. The fact that they have a molecular weight of about
500,000 gives us an idea of the minimal size for an actuator for a nanoscale self-replicating device.
Note that biomotors are built using directed self-assembly from ribosome-created parts.

• Ionic Polymer-Metal Composites (IPMC): These new actuators are the most promising, with a low
drive voltage 5-7 volts, a reaction time of milliseconds, more than 10% actuation displacement, and
they scale down to 10 microns thick.

The most obvious actuators are motors and solenoids. We didn’t spend too much time deciding whether
or not rotary or linear motors would be better, other than quickly confirming that either would work at a
macro scale. Whether we use rotary or linear at a molecular scale depends on what is available – As long
as their requirements are met, the upper levels aren’t impacted one way or the other. Other candidate
actuators, such as piezoelectric and Nitinol were also considered, but were rejected either because of high
amounts of voltage or waste heat. One class of candidate actuator which received more attention included
Ionic Metal Polymer Composites (IMPCs).

We designed three different cell actuators that would use Ionic Polymer Metal Composites (IPMC).111 In
each case, a set of teeth needs to be engaged, moved, disengaged, and then moved back in a semi-
elliptical path. This is similar to the way in which muscles work at the actin and myosin level.112

Piezoelectric linear motors use a simple friction bar (not teeth) in a similar manner.113

Figure 26 Actin-Myosin, Square, and Washer designs of IPMC actuators

110 John Illingworth, The F0F1-ATPase, http://www.bmb.leeds.ac.uk/illingworth/oxphos/atpase.htm
111 See IPMCActinMyosinActuators.max, IPMCWasherActuators.max, and IPMCSquareActuators.max
112 "Actin Myosin Crossbridge 3D Animation", based in part on Agamemnon Despopoulos and Stefan Silbernagl,
Color Atlas of Physiology, http://www.sci.sdsu.edu/movies/actin_myosin_gif.html
113 Physik Instrumente, "Introduction to Ultrasonic Piezo-Motor Drives/Stages"
http://www.physikinstrumente.de/products/section7/piezo_motor_index.htm

http://www.bmb.leeds.ac.uk/illingworth/oxphos/atpase.htm
http://www.sci.sdsu.edu/movies/actin_myosin_gif.html
http://www.physikinstrumente.de/products/section7/piezo_motor_index.htm

50

In the Actin-Myosin model, the anchored strip would be fixed to the side strips to enforce a 90 degree
angle. When the connection angle does not need to be fixed (Mohsen Shahinpoor, a co-developer of
IPMCs, said that such connection methods should work).

In the Square design, the yellow boxes are the anchors (and connection to the teeth).

In the Washer design, the attachments must be non-conductive, and the xyz kinematics gets complicated
for large deformations. In IPMCs, the metal can be covered with an insulating layer and wires deposited
on it as in silk-screening and integrated circuit manufacturing. This is important to note because it will
keep wires from getting tangled.

The requirement for transforming electrical to mechanical movement is best satisfied by IMPCs (Ionic
Metal Polymer Composites), though the method should be irrelevant at the subsystem and cell levels. If
they don’t work, the option of using dielectric forces or electrostatic motors and solenoids is still
available,114 and as shown in the figure below, can be built from static parts.

Figure 27. A solenoid built from inert parts

15.3. Sensors
Requirement: Transform Mechanical Position to Information

Implementation: The following choices exist:

• mechanical switches

• LED photodiode pairs

We designed a mechanical switch that would detect the existence of a neighboring cell.

114 Robert A. Freitas Jr., Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, TX, 1999,
http://www.nanomedicine.com/NMI/6.3.5.htm#p6 and Forrest F. Bishop, “A description of a universal assembler,” Proc. IEEE
Intl. Joint Symposia on Intelligence and Systems, 4-5 November 1996, Rockville, MD, USA (ISBN 0-8186-7728-7), 1996;
http://www.iase.cc/html/universal.htm

http://www.nanomedicine.com/NMI/6.3.5.htm#p6
http://www.iase.cc/html/universal.htm

51

Figure 28. Sensor Switches
Fortunately, before we had gotten too far in analyzing the design, we decided that the other cell
requirements of transmitting information between cells and with the outside world (in pixilated mode)
made simple mechanical bumps and switches not feasible. We decided that LED and photodiode pairs,
while possibly more difficult to assemble than mechanical contact switches, would work much better.
They contain no moving parts (and hence have higher reliability), respond faster, and have a triple use as
cell position sensor, inter-cell data transmission, and I/O (infrared input and pixel output). In addition,
they might be used to detect part position without being in contact.

Figure 29. Java output of a 1-D sensor positioning test, with LEDs sliding right on top

Accurate sensor positioning appears possible with three different types of LED/photodiode pairs because
the weaker interaction in mismatched pairs is locally monotonic with spectrum difference. We developed
a Java application that easily allows for testing different one-dimensional configurations of LEDs and

52

photodiodes. In the figure above, the LEDs are in the right-moving top cell, while the photodiodes are in
the stationary bottom cell. The graphs show the photodiode output as the right edge of the cell slides past.

Originally, we thought that we could simplify the design and minimize the number of sensors and LEDs
by placing them diagonally across the cell face. After all, the cells were constrained in their movement in
only one direction at a time, and the diagonals would cross in only one place, precisely and
unambiguously identifying the relative cell positions. So we built a 2-D simulator which can be used to
try these other, more complicated designs. The power of simulation became obvious, because the
simulator calculated in seconds what would have taken over an hour. It turned out that the crossing sensor
placement lacked precision – meanwhile, in a linear placement, every sensor is getting information most
of the time, aiding in discerning the exact position of the cubic cell. Switching back to a nonsymmetrical
linear placement of LEDs and optical diodes, our first design had 46 ambiguous positions (out of 200 1%
incremental movements). But after only about four iterations, we found a placement that had only two
ambiguous positions. The output of the 2-D Java application shown in the figure below shows the
idealized values of the sensors, based on the position of right edge of the top cell, as the top LEDs (with a
transparent substrate) travel across the stationary (and dark substrate) optical diodes. At any rate, the
design in 2D array could have been discovered by the 1D tool.

Every simulation is limited by its assumptions. In the case of our 1D and 2D simulations, the algorithm
assumes one-dimensional positional steps of 1/100 cell unit, and a strength differentiation (using a D/A
converter) accurate to 1 part in 40 (5.5 bits).

Figure 30. Java output of a 3D sensor position test, with two gray LED-embedded cells sliding right

In summary, with these simulation tools to simplify the placement of the LEDs and photodiodes, we
learned the following:

53

1. Since the movement is in one dimension, we only needed a one-dimensional tool – two
dimensions were not necessary.

2. Testing LED/photodiode positions using Java simulations is much easier than manual
simulations.

3. By using three colors of LED/photodiode pairs and six bit A/D converters, we found that we
could detect positions within 0.5% of a cell width.

4. That means that KCA cells can manipulate some small parts, and hints that non-adjacent cell
LED/photodiode pairs might also be used to check part locations.

The problem with using the LED/photodiodes to detect position, as illustrated above, is that the
photodiodes would need to be attached to analog-digital converters. Each A/D converter would contain
eight resisters, eight op-amps, and an 8-3 decoder. Adding this complexity is necessary because cells need
to travel fractional distances to pick up small parts.

15.4. Logic Unit
One important difference between the KCA SRS presented in this report and all other designs is its
emphasis on achieving closure at a digital information level.

The requirements for the Logic Unit of the cell:

• Decode incoming messages into electrical signals for electromechanical actuators
(lock/unlock/move)

• Pass signals in the correct direction

• Cooperate with neighbors on logic processing tasks

Implementation:

• A shift register can take serial data messages, parallelize them, and store them.115 A demultiplexer
will decode these parallel signals into electrical signals, thereby satisfying the first requirement.116

• The second requirement must be met so that cells can cooperate as a subsystem that can process
complex information.

• Act as a Configurable Logic Block (CLB).

Designing the Logic Unit required a method for determining how the cells would cooperate and process
complex information. The Logic Unit does not need to be Turing equivalent – it only needs to support
the functionality of the subsystem above it. In other words, it needs to function like the CLB of an FGPA,
and it needs to interpret move and lock commands.

Like all digital electronics, CLBs can be built only out of NAND gates, and the core architecture of this
repeating logic unit (in FPGAs) requires about 200 gates.

There is some evidence that an entire FPGA can be self-assembled.117 At a molecular scale, two other
research approaches are working towards FPGA-like molecular devices: stochastically self-assembled

115 See Muhammad E. Shaaban, Registers & Counters, http://meseec.ce.rit.edu/eecc341-winter2001/341-2-13-2002.pdf
116 See Ken Bigelow, The 2-to-4 Line Decoder/Demultiplexer, http://www.play-hookey.com/digital/decoder_demux_four.html
117 Michael Butts, Andr DeHon, and Seth Copen Goldstein, "Molecular Electronics: Devices, Systems and Tools for Gigagate,
Gigabit Chips", International Conference on Computer-Aided Design, November 2002 (ICCAD’02),
http://www.cs.caltech.edu/research/ic/pdf/tutorial_iccad2002.pdf See also Stephen Brown and Jonathan Rose, “Architecture of
FPGAs and CPLDs: A Tutorial” http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf.

http://meseec.ce.rit.edu/eecc341-winter2001/341-2-13-2002.pdf
http://www.play-hookey.com/digital/decoder_demux_four.html
http://www.cs.caltech.edu/research/ic/pdf/tutorial_iccad2002.pdf
http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

54

nanocells,118 and bottom-up assembled Cell Matrixes.119 These methods may be used to enhance the
Logic Unit, or simplify SRS construction (because the Logic Unit comes as an input part, and does not
need to be assembled by KCAs).

Regardless of the approach, the CLB (Configurable Logic Blocks) must implement the instruction set
specified in the next section. Further work would involve simulating the electronics in SolidWorks, 3D
Studio, or more likely, an electronics simulation package such as SPICE, MultiSim, or DigitalWorks.

15.4.1. Instruction Set for Logic Unit

What should the Logic Unit really need to be able to do? After we realized that all we had to do was run
as a CLB and execute minor command, the required instruction set reduced to the following:

1. Move
- face and direction (5 bits) (more compact than 2*3=8 bits for each of six possibilities)

- Top face in North, South, East, or West direction
- Bottom face North, South, East, or West direction
- East face North, South, Up, or Down direction
- West face North, South, Up, or Down direction
- North face East, West, Up, or Down direction
- South face East, West, Up, or Down direction

- Magnitude type (whole or fraction) 1 bit
- Magnitude needs at least 3 bits (0-8) for fractions. Cell movements will be limited to 8

whole units at a time.
2. Lock Face NorthEW, NorthUD, SouthEW, SouthUD, EastNS, EastUD, WestNS, WestUD, UpNS,

UpEW, DownNS, DownEW or None (replaces unlock) (4 bits)
3. Configure as FPGA Xilinx Configurable Logic Block (CLB) or Actel Logic Module
4. Run as FPGA Xilinx Configurable Logic Block (CLB) or Actel Logic Module
5. Accept a message from North, South, East, West, Up, Down.
6. Send a message North, South, East, West, Up, Down.

15.4.2. Logic Unit Trade-offs

Our preliminary cell design had two tab/slot pairs, which would transmit power, data, clock and ground
between cells through two connections, similar to the way power line modems extract data from AC
lines120. Extraction of data from DC power requires four op-amps121 plus two diodes, six resistors, and
wires.122 Unfortunately, unlike NAND gates, op-amps are made of more components (20 transistors, 11
resistors, and a capacitor)123, so they are more difficult to self-assemble into input parts, though simplified
versions may work well enough for A/D functionality needed. Extracting the clock signal in addition to
the data from the same two wires would require even more complexity. We considered having four tabs
per side per direction, one each for V+, data, clock, and ground – except that the only thing that is
important about data and clock is information. It made more sense to use matched LEDs and photodiodes
to transmit clock and data, and use the tabs for power and ground.

118 Self-Assembled Nanocells Function As Non-Volatile Memory”,
http://www.sciencedaily.com/releases/2003/10/031020053847.htm
119 Lisa J K Durbeck and Nicholas J Macias , “The Cell Matrix: an architecture for nanocomputing”, Nanotechnology 12 (2001)
217–230, http://www.cellmatrix.com/entryway/products/pub/ForesightIOP.pdf
120 Power line modems http://www.cogency.com/B_Support/Data_Communications.pdf
121 A bidirectional, high-side current-sense IC amplifier http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1108/ln/en (i.e. three
op-amps) and a Tiny CMOS Comparator with Rail-to-Rail Input http://www.national.com/pf/LM/LMC7211.html (i.e. another
op-amp)
122 “DC power wire also carries clock or data”, EDN-Design Ideas, March 13, 1998, http://www.e-
insite.net/ednmag/archives/1998/031398/06di.pdf
123 Tony van Roon, “Operational amplifiers”, March 17, 1995 http://www.uoguelph.ca/~antoon/gadgets/741/741.html

http://www.sciencedaily.com/releases/2003/10/031020053847.htm
http://www.cellmatrix.com/entryway/products/pub/ForesightIOP.pdf
http://www.cogency.com/B_Support/Data_Communications.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1108/ln/en
http://www.national.com/pf/LM/LMC7211.html
http://www.e-
http://www.uoguelph.ca/~antoon/gadgets/741/741.html

55

Will NAND gates be available as input parts, specifically complex self-assembled, molecularly precise
parts? Current research indicates that this should be possible.124 Researchers have self-assembled wires
using rosette nanotubes125 and diodes126. At present, Dr. James Tour’s method of finding working devices
in a jumble of nanotubes is inelegant, but might also be used.127 To lower the uncertainty regarding this
assumption, we spent some time examining how NAND gates and other input parts could be self-
assembled.

15.5. A Rough Spectrum of Assembly Methods
In our attempt to derive the simplest set of input parts to an SRS (self-replicating system), we found that
there is a rough spectrum of device assembly capabilities that apply to SA and SRS.

• Random Assembly: A jet crashes into a junkyard, resulting in a dozen working cars. This is not quite
as farfetched as it sounds – in presence of energy flows, GRP processes, and isolated populations, this
is almost what happens during evolution.

• Globally Directed Assembly: Like baking, the idea is to arrange thing so that pieces move to lower
energy states in a desired configuration. Langmuir-Blodgett thin films and monolayers are good
examples of this method, as is Penrose’s 3-D puzzle pieces.128

• Exponential Assembly: Robots with two degrees of freedom are spread on a surface that has three
degrees of freedom. The resulting five degree-of-freedom system interacts with a surface full of
unassembled robots to construct them in an exponential manner.129

• Locally Directed Assembly: In biological cells, the cytoplasmic environment is very highly
structured. This means that assembly, while still following lower energy (and increased entropy)
states, is directed to a much more restricted set of interactions than in Globally Directed self-
assembly.

• Positional Assembly: A precise deterministic method that constrains the locations and pathways of
every part in three dimensions (and time) so that only the one desired interaction can take place. In
contrast, most self-assembly techniques depend on probabilistic methods of constraining parts and
their interactions.

• Convergent Assembly: A type of Positional Assembly based on the idea that smaller parts can be
assembled into larger parts, larger parts can be assembled into still larger parts, systematically
repeated in a hierarchical fashion to span the size range from the molecular to the macroscopic.130

124 Lewis, et.al., “Control and Placement of Molecules via Self-Assembly”,
http://www.foresight.org/Conferences/MNT8/Papers/Weiss/index.html
125 Hicham Fenniri, et. al., "Entropically driven self-assembly of multichannel rosette nanotubes", PNAS 2002 99: 6487-6492;
http://www.pnas.org/cgi/reprint/99/suppl_2/6487.pdf and R. Colin Johnson, "Nanotubes self-assemble into circuit elements", EE
Times, March 26, 2002, http://www.eetimes.com/at/news/OEG20020326S0038
126 Man-Kit Ng, Dong-Chan Lee, and Luping Yu, "Molecular Diodes Based on Conjugated Diblock Co-oligomers", Journal of
the American Chemical Society, Sept. 12, 2002, http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja026808w and R.
Colin Johnson, "Polymers self-assemble to form 2.5-nm diode", EE Times, 16 October 2002, ,
http://www.electronicstimes.com/story/OEG20021015S0040
127 See Paul D. Franzon, “A walk in the NanoPark – Practical Paths to Molecular Computers”,
http://www.ece.ncsu.edu/erl/moelec/Sun_Franzon.pdf
128 L. S. Penrose, “Self-reproducing machines”, Scientific American, Vol. 200, No. 6, pages 105-114, June 1959. Summary at
http://www.cs.bgu.ac.il/~sipper/selfrep/
129 George D. Skidmore, Eric Parker, Matthew Ellis, Neil Sarkar, and Ralph Merkle, “Exponential Assembly”,
http://www.zyvex.com/Publications/papers/exponentialGS.html
130 Ralph C. Merkle, "Convergent assembly", Nanotechnology 8, No. 1, March 1997,
http://www.zyvex.com/nanotech/convergent.html

http://www.foresight.org/Conferences/MNT8/Papers/Weiss/index.html
http://www.pnas.org/cgi/reprint/99/suppl_2/6487.pdf
http://www.eetimes.com/at/news/OEG20020326S0038
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja026808w
http://www.electronicstimes.com/story/OEG20021015S0040
http://www.ece.ncsu.edu/erl/moelec/Sun_Franzon.pdf
http://www.cs.bgu.ac.il/~sipper/selfrep/
http://www.zyvex.com/Publications/papers/exponentialGS.html
http://www.zyvex.com/nanotech/convergent.html

56

• Membrane Assembly: A single master machine makes assembly lines, which in turn make assembly
membranes. Not yet achieved, this method assumes that Positional Assembly can be done in three
dimensions.131

• Parallel Assembly: Massive numbers of active units produce the same product in parallel; includes
every type of self-assembly, exponential assembly, self-replication and its hybrids.

15.6. Self-Assembly in Molecular Electronics
As discussed earlier, self-assembly appears to be the wrong approach for building general-purpose
universal constructors. But self-assembly state-of-the-art will determine the complexity and quality of the
input parts for a KCA SRS.

One area of vigorous research today is self-assembling molecular electronics. Recent work by Angela
Belcher uses genetically engineered bacteriophages that can attach to as many as 30 materials, and she
expects to form nanotransistors very shortly132. Susan Lindquist is using genetically engineered yeast
prions to spin long, durable fibers that bind to gold and silver nanoparticles, forming ultrafine conductive
wires133. Erez Braun and his team at Technion-Israel Institute used DNA and proteins as “smart Velcro”
to assemble nanotubes into nanotransistors.134

Another area where self-assembly is being explored vigorously today is in the field of self-assembling
molecular electronics. Some proposals claim that circuits could be self-assembled into circuits using
Wang tiles135 and DNA as “smart glue”. Wang tiles are equal-sized squares with particular types of
associative edges, usually represented by colors. In physical instantiation at a molecular scale, the correct
edges would be covered with “smart glues” that bind selectively only with particular counterparts.

We wanted to assume that this approach will work, but we needed an order of magnitude idea of how
difficult it would be. We built a simulation in Java to calculate what types of smart glue are necessary to
build NAND (Not AND) gates.136

Wang tiles instantiate Pascal’s triangle as a Sierpinski triangle137 because both are regular mathematical
constructs. Circuits are more difficult to design because they are not regular. Looking at RTL and
CMOS implementations of NAND gates, we derived a set of eight Wang tiles sufficient to form a two-
dimensional NAND gate and implemented an algorithm that identifies the minimal set of edges for a
given tile configuration. Further work involves developing an algorithm for choosing and organizing
components that results in a minimal edge set for a given circuit.

131 Tihamer Toth-Fejel, "LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel
Nanomachines for Space Applications”, The Assembler, Volume 4, Number 3 Third Quarter, 1996
http://www.islandone.org/MMSG/9609lego.htm
132 Sandra R. Whaley, Doug S. English, Evelyn L. Hu, Paul F. Barbara, Angela M. Belcher, “Selection of peptides with
semiconductor binding specificity for directed nanocrystal assembly,” Nature 405(8 June 2000):665-668; Seung-Wuk Lee,
Chuanbin Mao, Christien E. Flynn, Angela M. Belcher, “Ordering of quantum dots using genetically engineered viruses,”
Science 296(3 May 2002):892-895.
133 Thomas Scheibel, Raghuveer Parthasarathy, George Sawicki, Xiao-Min Lin, Heinrich Jaeger, Susan Lindquist, “Conducting
nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition,” Proc. Natl. Acad. Sci. (USA)
100(15 April 2003):4527-4532.
134 Kinneret Keren, Rotem S. Berman, Evgeny Buchstab, Uri Sivan, Erez Braun, “DNA-templated carbon nanotube field-effect
transistor,” Science 302(21 November 2003):1380-1382
135 Wang tiles are equal-sized squares with a color on each edge. Originally devised to help solve problems in compuational
undecidability, Wang tiles can be translated into Turing machines. See http://en2.wikipedia.org/wiki/Wang_tile
136 All digital circuits can be designed using only NAND gates, and often are because they require less transistors than do OR or
AND gates.
137 See Erik Winfree , “Simulations of Computing by Self-Assembly”, May 31, 1998,
http://cba.mit.edu/events/03.11.ASE/docs/Winfree.1.pdf and Matthew Cook, Paul W.K. Rothemund, and Erik Winfree, “Self-
Assembled Circuit Patterns”, http://dna.caltech.edu/Papers/SAcircuits_DNA9.pdf

http://www.islandone.org/MMSG/9609lego.htm
http://en2.wikipedia.org/wiki/Wang_tile
http://cba.mit.edu/events/03.11.ASE/docs/Winfree.1.pdf
http://dna.caltech.edu/Papers/SAcircuits_DNA9.pdf

57

We assume that chemists will be able to self-assemble molecular “smart glues” that will instantiate the
necessary Wang tile edge set. The current research on “smart glue” focuses on DNA oligonucleotides
(short, single stranded DNA molecules) because they offer tremendous selectivity, resulting from the
affinity that each nucleotide has for its complement. Oligonucleotides bind selectively in the presence of
hundreds of thousands of incorrect sequences, all based on the same fundamental chemistry.
Oligonucleotides that are N bases long can form 4N different attachment chemistries, all of which work at
similar pHs, ionic strengths, and temperature. In addition, DNA connections are reversible, so incorrect
structures can be dehybridized (with a high probability of correct reassembly)138.

Figure 31. Wang tiles with differently sequenced oligonucleotides represented by different colors.
The 3-D figures in the figure above depict two functional Wang tiles. The tile on the left encapsulates a
high-conductivity buckytube, (represented by its Wang symbolization below, also on the left). The tile
encapsulating a buckytube transistor is on the right, (in both figures). The red, green, yellow, and blue
colors on the connection surface between the two tiles in the figure above represent different smart glues
that provide unique binding locations while ensuring proper alignment, as long as red has an affinity for
blue, and green for yellow. It is unclear what additional steps would be needed to achieve solid
connections and build NAND gates in this fashion, especially since at very small scales, components
work differently depending on what they are connected to. Further work is needed to discover the design
rules that consider this phenomenon.

138 Brian D. Reiss, Thomas E. Mallouk, Christine D. Keating, et. al., “DNA-Directed Assembly of Anisotropic Nanoparticles on
Lithographically Defined Surfaces and in Solution”, Mat. Res. Soc. Symp. Vol. 635 © 2001 Materials Research Society,
http://research.chem.psu.edu/mallouk/articles/MRS635.pdf

http://research.chem.psu.edu/mallouk/articles/MRS635.pdf

58

Figure 32. Wang symbolization (wire and transistor)

For our case, three nucleotides would uniquely identify the necessary Wang tile configurations, but
additional specificity is needed for 3D centering and for redundancy. Oligonucleotides are normally five
to fifty nucleotides long; for our case ten should be more than sufficient.

Figure 33. Java output of Wang tile implementation of a NAND gate

The figure above is the result of the Java program. The NAND gate contains 42 total Wang tiles of 8
different raw types, with 142 total edges of 34 different types of smart glue, resulting in 38 unique (with
smart glue edges) tile types.

Adding only five additional types of tiles allows the construction of simplified op-amps, which are
necessary for analog-to-digital converters (ADCs) and optical diode signal recognition. This design
depends on the characteristics of the bipolar transistors being within 5 percent of each other (as is true in
integrated circuits) – we assume that chemically self-assembled Wang tiles will meet this constraint.

59

Figure 34. Java output of Wang tile implementation of an op-amp
The op-amp design in the figure above required 50 total Wang tiles of 11 different raw types, with 170
total edges of 42 different types of smart glue, resulting in 50 unique tile types (with smart glue edges).

Building these 38 (or 50) individual Wang Tiles, each containing a molecularly precise arrangement of
conductive or semiconducting nanotube, with a unique pattern of smart glue on its edges, is a non-trivial
problem. But this is a reasonable expectation, given current progress in research labs all over the world.

This self-assembly work was quite a detour – one that we didn’t expect to take. But we had to make sure
that we were really working from the bottom up. One of the big wins of this detour concerns the argument
between the “dry mechanosynthesis” school of thought headed by Eric Drexler and Ralph Merkle, and
Richard Smalley’s “wet enzyme plus carbon nanotubes” nanotechnology school regarding “fat” fingers

60

and “sticky” fingers.139 It turns out that, with the approach that we took, it doesn t matter who is right –
KCA SRSs can use input parts made from either method.

16. Facet Design Requirements
The Facet requirements are driven by the Cell level, but don’t do much because Facets do little more than
take advantage of symmetry, and translate global x/y/z coordinates to local u/v coordinates.

In the figure below, the actual mechanics by which the cells move, lock, and communicate become more
obvious. There are two facets: one purple and one yellow one. Each facet contains a center structural part
(which has a dark and light blue checkerboard on it), an edge structural part (with dark and light red and
green patterns on it, and a corner. These are shown next to each other, but in operation, one would be on
top of the other, so that the curved tab (of the purple facet) can lock or unlock into the complementary
yellow facet, where the teeth can lock the tab into place, or move it in the tab’s linear direction.

Figure 35. Two complementary facets

17. Software Simulation
We originally proposed building a 3D physics simulator out of existing (and free) packages. However,
we decided that this was most likely the wrong approach because we did not want to reinvent existing
commercial software.140 Building a simulation model is necessary to verify a design, but building a new
simulator is only necessary when we find out that current ones do not work adequately. Another
complicating factor with simulations is that for different problems, widely different simulation solutions
exit. For kinematic analysis, for example, 3D Studio animations and MaxScript are adequate. However,
modifying 3D Studio to detect LED/optical diode interaction by simulating it in three dimensional space
would have been extremely difficult. However, coding the necessary representation in Java to get the
same information was easy.

139 Point/Counterpoint: “Nanotechnology - Drexler and Smalley make the case for and against 'molecular assemblers'”, Chemical
Engineering News, December 1, 2003, Volume 81, Number 48, http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html
140 "MSC.visualNastran 4D: Engineers", http://www.krev.com/vn4d/engineer.html "Pro/ENGINEER Detailed Design",
www.ptc.com/products/proe/

http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html
http://www.krev.com/vn4d/engineer.html
http://www.ptc.com/products/proe/

61

We confirmed our preliminary design with a number of software models, including

• A Sensor Position Simulation Tool, written in Java

• A NAND gate and op-amp Self-Assembly Tool, also written in Java

• Using 3D Studio, we animated a Facet to see how locking and movement might occur between
cells.

• Using 3D Studio MaxScript to simulate how the Transporter and Connector work.

Both the 1D and 2D Sensor Position Simulation Tools were discussed earlier, as was the NAND gate and
op-amp Self-Assembly Tool.

17.1. Facet Animation
This 3D animation shows only one facet, and how each one has both duties; locking and moving. The
facets need to lock to each other, slide freely in one direction, or completely disconnect. In the figures
below, the four-part facet fits into complementary facet above it (the one containing the tab is set to be
90% transparent).

Figure 36. Facet showing Tab extending

The light red, green, and blue surfaces are the communication LEDs on the edge and corner structural
parts. The dark red, green, and blue surfaces are the communication optical diodes that receive messages.

17.2. Simulation of Transporter and Connector
The simulation of the Transporter and Connector was done in 3D Studio MaxScript. It used many of the
nested subroutines (listed in Appendix A) that a physical implementation at any scale would need.

A few highlights of this simulation:

1. Two parts (a pink corner part and a yellow edge part) are simultaneously grasped from their
feedstock cartridges (which are invisible) by Transporter Subsystems, which then back up.

62

2. One of the parts (the yellow edge part) is prepared by a light blue “preparation toolbit” which it
grabs from a supply underneath the “working plane”. In the macro world, this could be a ampoule
of glue that is afterwards thrown away. On the nano scale, this toolbit could be an abstraction tool
that removes the oxide or hydrogen layer that occupies all the dangling covalent bonds on the
outer surfaces of everything. You’ll notice that the toolbit holder is pretty much the same as the
other movable holders, except that it comes up through the nominal “working plane”. This is one
of the advantages of hyperarticulation.

63

3. After the yellow part is prepared, the toolbit holder gets out of the way and the two parts are
joined. Note that the corner part could have been similarly prepared.

Finally, the two original aggregates push the two parts together.

This simulation required a hierarchy of subroutines. The full list of subroutines is in Appendix B; only a
small number of them needed to be implemented in MaxScript to simulate an assembly process.
Surprisingly few subroutines were necessary to code this simulation. Hundreds of steps very similar to
this assembly step would be necessary to build a single modular cell.

64

18. Conclusion
The expectation at the beginning of this project was that there would be difficulties in designing a KCA
SRS, and there were – mostly caused by incorrect assumptions – but the important and surprising result
was that a small project of this scope could find a fairly clear and successful design with no roadblocks!

There remain a few details to be finalized, especially regarding communication protocols, but it is
reasonable to expect that existing protocols could be adapted.

We also need to design the final level of detail for macro-sized physical prototypes. Then we need to
build physical prototypes, using stereolithographic rapid prototyping for structure, and adding sensors,
actuators, and field-programmable gate arrays (the last, ironically enough, mostly to emulate a
Configurable Logic Block). Then we want to run small cell collections, like a 5-cell crawler – inevitably,
we will make design improvements. The next step is to build and run subsystems such as the 12-cell
Transporter, 98-cell Connector, and 300-cell Controller. Again, we will undoubtedly uncover a few more
design flaws, but we might find some very specific applications at this point. That will take us to the point
where we can build a simple macroscale SRS.

It would be important to write a Place and Route package for open source Configurable Logic Blocks that
would make up the Controller – it doesn’t have to be fancy, but we don’t want to manually rewire a
processor more than once.

The next logical step would be to build microscale KCA systems made with standard MEMS techniques.
The pixilated and dynamic logic processing properties will make it possible to penetrate some existing
markets.

After that, the final stage of KCA SRS research will be to refine the concept to take advantage of
nanoscale parts available at that time.

19. Acknowledgements
• NASA Institute for Advanced Concepts
• Robert Freitas and Matt Moses
• Rick Berthiaume, Ed Waltz, Ken Augustyn, and Sherwood Spring – General Dynamics AIS
• John McMillan and Teresa Macaulay – Wise Solutions
• John Sauter – Altarum
• Forrest Bishop – Institute of Atomic-Scale Engineering
• Joseph Michael – Fractal Robots, Ltd.

This project was a result of contributions from many people. NIAC, of course, provided the funds, and
for that we are extremely grateful and honored. A number of other people helped significantly by
believing enough in our ideas to invest in writing the proposal, and in providing helpful ideas. Finally, I
was surprised and gratified by the number of people from all over the country who provided us with
encouragement and critical feedback. They were as grateful as I that the U.S. government, in the form of
NASA’s Institute for Advanced Concepts, was willing to fund this important work.

So thanks again to NIAC for making it possible.

65

20. Appendix A: Subroutines
The following list of subroutines represents a possible hierarchy of instructions that a Control Subsystem
would use to control cells and various aggregates of cells.

Cell createCell(x y z color) - done

Boolean doesCellExist(x y z) - done
Boolean isCellReadyForUnitMove(cell direction)

Boolean isCellMoveLegal(cell direction) – algorithm done

Boolean makeCellReadyForUnitMove(cell direction)

Boolean moveCell(cell direction magnitude) - done

Number moveCellUntilCollision(cell direction magnitude)

Boolean changeCellColor(cell color)

CellArray getNeighbors(cell axisDirection) -done
Cell getNeighbor(cell direction) - done

CellArray createRow(fromX fromY fromZ toX toY toZ) - done

CellArray makeRow(fromX fromY fromZ direction numberCells)

Boolean moveRow(cellArray direction magnitude) - done

Boolean changeArrayColor(cellArray color)

Boolean isRowReadyForUnitMove(cellArray direction)

Boolean makeRowReadyForUnitMove(cellArray direction)

Boolean moveRowOneOff(cellArray direction)

CellArray getRow(fromX fromY fromZ direction) - done

CellArray getFirstCell(cellArray direction)

CellArray getBackUp(cell direction)

Boolean moveBackUp(cellArray)

Boolean moveFrontDown(cellArray)

Boolean moveRowToEnd(cellArray direction magnitude)

Boolean createPlane(fromX fromY fromZ toX toY toZ)

Boolean createPlane(fromX fromY fromZ numberCellsDirectionX numberCellsDirectionY)

Boolean isPlaneReadyForUnitMove(cellArray direction)

Boolean makePlaneReadyForUnitMove(cellArray direction)

Boolean movePlane (cellArray direction magnitude)

CellArray getBottomPlane() - done
CellArray getFarthestCells(axis plusOrMinus cellArray) - done

66

Cell getExtremeCell(directionX, directionY, directionZ) - done

Cell getFarthestCell(direction1 direction2)

CellArray createTransporter(x y z orientation)

CellArray makeTransporter(startCell)

CellArray createCrawler(x y z length width)

CellArray makeCrawler(startCell length width)

Boolean moveCrawler (direction magnitude)

CellArray createSpider(x y z size)

CellArray makeSpider(startCell size)

Boolean moveSpider(CellArray direction magnitude)

Boolean createLetter(string x y z direction)

Boolean createString(string x y z direction)

Boolean makeLetter(string startCell direction)

Boolean makeString(string startCell direction)

Boolean createController()

Boolean makeController(startCell)

Boolean formSystem(CellArray)

Boolean assembleCell()

67

21. Appendix B: Functionality Matrices
This is a preliminary set of functionality matrices for two types of self-replicating machine architectures -
the proposed Kinematic Cellular Automata Self-Replicating System cell-system (KCA SRS), and the
Moses Universal Constructor Prototype (UCP).

The following tables are meant to help define some of the trade spaces for a practical self-replicating
machine, and to provide some of an approximate first-cut concept that can later be refined and evolved
into a detailed and functional design.

Functionality matrices compare structures, components, or features of a design with the functions
they perform. The following matrices are presented in a hierarchy; starting with large assemblies of parts
and high level functions, working down toward specific functions and detailed features of individual
parts. The KCA SRS design is categorized into four levels, while the UCP is categorized into three.
Distinguishing levels is subjective. We attempted to place category dividing lines at sensible levels of
complexity, but it could be done differently. For example, the KCA SRS Cell and Facet levels could be
combined into one Component level.

21.1.1. KCA SRS Functionality Matrix Hierarchy
System - Growing, transformable lattice and support system made of Cells

Cell - Basic lattice building block assembled from 6 Facets

Facet - Near-planar structure assembled into cubical building blocks - Cell parts that are repeated in x, y,
and z

Subfacet - Small parts that make up a Facet - Parts that can be self-assembled

21.1.2. UCP Functionality Matrix Hierarchy
System - Growing, transformable lattice and support system made of components

Component - Single-piece (in general) block-like component cast from plastic

Subcomponent - individual features of and occasional moving parts in components

68

21.1.3. KCA SRS System Level

In
di

vi
du

al
Ce

lls

La
tti

ce

El
ev

at
or

La
rg

e
m

ov
em

en
t

Fi
ne

 m
ov

em
en

t c
ra

ne

C
on

tro
l S

ec
to

r

Transport parts in XYZ axes
Transport structures up/down to other lattice planes
Grow Lattice in XY axes
Grow lattice in z axis
Environment for structure movement
Open area for structure rearrangement
Foundation for structure construction
Add/remove new Cells to structures
Assemble Cells from Facets
Assemble Facets from subfacet components
Broadcast control messages
Consult instructions in memory
Interpret feedback signals from structures

System Level functions are at the highest level. These functions involve the creation of new
Cells, transport of Cells, and assembly of Cells onto the growing lattice and other structures. Note that
individual Cells are listed along with complex structures made of individual Cells. Since each Cell is
individually capable of moving about, and connecting/disconnecting to the lattice, single Cells are
capable of high level system functions (compared to the UCP design where individual building blocks are
not capable of any high level functions).

The lattice is an essentially static network of Cells that provides the avenues and foundations for
mobile structures to move on and static structures to be built. Elevators move blocks up and down
between vertical lattice planes, while cranes move things primarily back and forth within the lattice plane,
although for assembly they move Cells up and down in a limited range of motion. The fine movement
crane has higher precision but less range of movement than the large movement crane. The control sector
is an area or volume of effectively immobile Cells that have pooled their meager computing resources in
order to control the rest of the lattice. They don't move around or transport or assemble anything, their
logic resources are used to direct the rest of the lattice.

69

21.1.4. KCA SRS Cell Level

Option 1

G
en

er
i

c
Ce

ll

Structural unit
X movement unit
Y movement unit
Z movement unit
Cell assembly tool
Facet assembly tool
Subfacet component fixturing tool
Subfacet component storage
Subfacet component transport
Element of Control Sector

Option 2

M
ai

n
St

ru
ct

ur
al

Fi
ne

A
ss

em
bl

y

Sm
al

l p
ar

ts
fix

tu
rin

g

Sm
al

l p
ar

ts
tra

ns
po

rt/
st

or
ag

e
Structural unit
X movement unit
Y movement unit
Z movement unit
Cell assembly tool
Facet assembly tool
Subfacet component fixturing tool
Subfacet component storage
Subfacet component transport
Element of Control Sector

In Option 1, all Cell level functions are performed by a single Cell. This simplifies certain
aspects of the design - such as Cell assembly from Facets, but complicates Facet design. Another option
may be to have a basic 5-Faceted Cell that is specialized by the addition of a special purpose Facet. The
main structural Cell could be responsible for large-scale transport and assembly (movement of >1 Cell-
lengths, Cell-to-Cell assembly), with a fine assembly Cell responsible for putting together Facets and
Cells, and Cells with a variety of special purpose fixturing and conveyor type Facets for small
subcomponent parts handling. Note that without some universal type of handle on all the subfacet
components, different fixture Facets will be needed for each subfacet part.

70

Given that the ability to do fine movement requires an A-to-D converter on each LED,
specialized cells might be a good idea.

21.1.5. KCA SRS Facet Level

Option 1

M
ob

ili
ty

 F
ac

et

G
ra

sp
in

g/
A

ss
em

bl
y

Fa
ce

t

Dual-Axis sliding mechanism
Connect/disconnect to other Facets
Pass power/data to Cell-connected-to
Pass power/data to Facets within host Cell
Interpret and act on broadcast control
messages
Grasp small subfacet components
Fixture small subfacet components
Transport/convey subfacet components

Option 2

G
en

er
ic

 F
ac

et

Fi
ne

 A
ss

em
bl

y
Fa

ce
t

Sm
al

l p
ar

t f
ix

tu
rin

g
Fa

ce
t

Sm
al

l p
ar

t
Tr

an
sp

or
t/S

to
ra

ge

Dual-Axis sliding mechanism
Connect/disconnect to other Facets
Pass power/data to Cell-connected-to
Pass power/data to Facets within host Cell
Interpret and act on broadcast control
messages
Grasp small subfacet components
Fixture small subfacet components
Transport/convey subfacet components

71

 Option 1 shows one interpretation of the baseline design, with 3 Facets for mobility, and 3 Facets
for grasping/assembly, and all Cells assembled identically. For the purposes of this analysis, we are
assuming that every Cell has the same orientation (they're not rotated with respect to each other) and that
the grasping/assembly Facets can also attach to mobility Facets and functionally move. Option 2
corresponds with Option 2 of the KCA SRS Cell Level, with different types of Facets specializing for
different types of tasks.

21.1.6. KCA SRS Subfacet Level

? ? ? ? … ?

Mechanism to attach to other Facet ? ? ? ? … ?
Actuator for attacher ? ? ? ? … ?
Mechanism for sliding motion ? ? ? ? … ?
Actuator for sliding motion ? ? ? ? … ?
Electrical contacts for power/data ? ? ? ? … ?
Routing of electrical power/data
within Facet ? ? ? ? … ?

Structural framework of Facet ? ? ? ? … ?
Interpret and act on broadcast
control messages ? ? ? ? … ?

… … … … … … …
Special purpose Facet features
(small parts assembly and handling) ? ? ? ? … ?

Some of the functions of subfacet components are listed above. A lot of detail on this level has
yet to be worked out. For example a simple sliding mechanism, which occupies a single entry in the
table, may in physical reality have to be composed of many components - such as a lead screw, a nut,
bearing surfaces, and several clips or snap-pieces for capturing the moving parts to the Facet framework.
Since the Facet has not yet been designed to this level of detail, this table lists only some of the functions
the subfacet components will probably have to perform.

72

21.1.7. UCP System Level

The UCP system level differs from that of the KCA SRS primarily in reduced complexity. There
are no control sectors in the UCP. Individual components are not mobile, as they are in KCA SRS. There
is no method for increasing the size of the operating plane (lattice), or for moving parts and structures to
different vertical levels (no elevators). Lattice expanders and elevators could probably be made from
UCP components, but none were demonstrated in Moses’ Master’s thesis.

O
pe

ra
tin

g
Pl

an
e

Sa
dd

le

Pa
rt

Lo
ad

in
g

Si
te

B
oo

m

Z
To

ol

C
on

tro
l (

vi
a

hu
m

an
 o

pe
ra

to
r)

Environment for structure movement
Foundation for structure construction
Fixture for loading components
Sliding movement in X axis
Sliding movement in Y axis
Sliding movement in Z axis
Remove component from loading site
Add component to structure
Generate sequence of movement commands for 3-axis
manipulator
Modify/Retry movement commands based on visual
survey of UCP status
Sequentially add parts to part loading site

73

21.1.8. UCP Component Level

This is the matrix that was presented in Moses’ thesis. More noticable now is that many of these
components are special purpose parts needed for reinforcing certain structures. With a
different/stronger/better component interconnect system many of these parts, such as the anchor, rail,
caps, and spans, may not be needed at all.

1
B

as
e

2
Pl

at
fo

rm
 A

3
Pl

at
fo

rm
 B

4
R

ac
k

5
M

ot
or

 A

6
A

nc
ho

r
7

R
ai

l

8
C

ap
 A

9
C

ap
 B

10
 S

pa
n

A
11

 C
ap

 C

12
 S

pa
n

B
13

 M
ot

or
 B

14
 M

ot
or

 C
15

 S
m

al
l

16
 L

ar
ge

Column construction unit
Platform construction unit
Beam construction unit
Sliding X/Y unit (prismatic
joint)
Foundation for Sliding X/Y unit
Rotating Z unit (pin joint)
Foundation for Rotating Z unit
Z-to-Z power transmission
Z-to-X/Y power transmission
Z-axis rotary motor
Z-axis linear motor
Gap-spanning unit
Overhang support unit
Reinforcement for 2 adjacent
units
Reinforcement for 2+ adjacent
units

74

21.1.9. UCP Subcomponent Level

Sn
ap

 ta
ng

Sq
ua

re
 h

an
dl

e

R
ou

nd
 h

an
dl

e

Ta
pe

re
d

su
rf

ac
es

 o
n

ha
nd

le

Ta
pe

re
d

su
rf

ac
es

 o
n

bl
oc

k
fr

am
e

Bl
oc

k
fr

am
e

(le
ss

 h
an

dl
es

 a
nd

ta
ng

s)
R

ed
uc

ed
-ta

pe
r h

an
dl

e

R
ed

uc
ed

 s
tif

fn
es

s
sn

ap
 ta

ng

Sl
ot

s i
n

bl
oc

k
fr

am
e

Hold two components together
Improve error tolerance during assembly
Structural framework
Allow component removal
Allow clearance of reinforcements on
other components

The basic component has a number of other features that have non-obvious functions.

Most edges on the handle and base are chamfered. The chamfers are important because they
allow a certain amount of positioning error during assembly. The tangs and handle also contribute to
error tolerance, since they are tapered such that two parts need not be exactly positioned before assembly.
The slots cut in each side of the base allow the part to be assembled onto other parts that have reinforcing
segments. Lastly, the tangs are L-shaped, and the top part of each tang is exposed by a slot cut in each
side of the handle. Depending on the type of loading on the tang, it will bend primarily in either the upper
or lower segment of the ‘L’. This can be exploited so that parts can be disassembled.

