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Abstract 
 
Left unshielded, astronauts on long, interplanetary voyages will be exposed to 
dangerous doses of radiation from cosmic rays. The proposed superconducting 
magnetic radiation shielding system could reduce the mass of shielding required for 
interplanetary travel compared to traditional absorption technologies. Since mass 
directly drives the cost of space systems, magnetic shielding can potentially make 
space exploration more affordable and hence more sustainable, a prime 
requirement of the new Space Exploration Vision. The concept of magnetic 
shielding is not new; the Earth has been doing it for billions of years! However, the 
ability to produce strong enough magnetic fields to enable magnetic shielding 
around spacecraft requires superconducting magnet technology that is only just 
becoming available. Many of the technical developments in space-qualified 
superconducting magnets referred to in this study were made as part of the AMS 
experiment currently scheduled to spend several years attached to the International 
Space Station. However, as revolutionary as these developments have been to date, 
they will not yet permit the construction of a sufficiently strong, large-volume, long-
lasting magnetic field suitable for long-duration human space flight. We have 
studied the details of surrounding habitable volumes in human interplanetary 
spacecraft with a large magnetic shield. Using successively more accurate magnetic 
field models, we have shown that magnetic fields which are near the upper limit of 
current technological capabilities can indeed provide significant radiation shielding 
beyond the limits of what is expected from reasonable passive shielding 
configurations.  If our research proceeds to Phase II, we plan to extend the shielding 
studies to even more accurate 3-dimensional magnetic shielding models. We also 
plan to examine other potential uses of superconducting magnet technology for 
human spaceflight. 
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1. The Risk from Radiation 
 
1.1 Types of Radiation 
 
Solar Particle Events  
 
Outside the Earth’s trapped radiation belts, two fundamental sources of radiation threaten 
the health of space travelers: solar particle events (SPEs) and galactic cosmic radiation 
(GCR).  Solar Particle Events consist mostly of low to moderate energy protons thrown 
into interplanetary space by coronal mass ejections. SPEs cannot currently be predicted in 
advance, but the frequency of SPEs is correlated with solar activity. Figure 1.1 shows 
typical spectra of strong SPEs. The danger to astronauts from SPEs is statistical, both 
because SPEs are relatively infrequent and because any given SPE will only affect 
spacecraft located in the zone of the solar-interplanetary magnetic field lines along which 
SPE charged particles are constrained to travel. Nevertheless, strong SPEs can deliver 
potentially lethal acute doses of radiation to unprotected astronauts. As an example, 5 Sv 
is generally recognized as a lethal dose, and the August 1972 SPE would have exposed 
Apollo astronauts to an estimated 10 Sv [Letaw, et al., 1987]. However, since SPE proton 
energies are almost all <1 GeV, they can be shielded against either with passive shielding 
or by the proposed magnetic shielding system. 
 
Galactic Cosmic Radiation 
 
Galactic cosmic radiation, consisting mostly of protons, alpha particles, and nuclei of 
heavier elements, is isotropic and pervades the solar system. Lower energy GCR can be 
scattered by irregularities in the solar-interplanetary magnetic field, which propagate 
outwards from the sun with the solar wind. Because such irregularities are correlated with 
solar activity, the intensity of low-energy GCR is anti-correlated with the solar activity 
cycle. The effects of scattering decrease at higher GCR energies, so the degree of 
variation with the solar activity cycle decreases at increasing energies. (Actually the 
deflection by magnetic fields is a combined function of the momentum and charge of a 
particle. For a given fully ionized element, “rigidity” increases with energy.) Figure 1.1 
also shows the GCR proton spectrum at solar minimum and solar maximum.  
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Figure 1.1 – Solar and cosmic proton energy spectra [Spillantini, et al., 2000] 
 
 
 
1.2 High-Energy Cosmic Rays – The effect of leakage through the radiation shield 
 
Any type of radiation shielding has an upper limit to the energy of particles against which 
it can shield. Above this energy, there will be leakage through the shield. However, the 
effects of this leakage differ greatly between magnetic shielding and passive absorption 
shielding. Spacecraft structures have traditionally been made of aluminum, and many 
studies and measurements have been done to show cosmic ray shielding by different 
thicknesses of aluminum. Results are shown in Fig. 1.2.  
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Figure 1.2 – Radiation doses received from galactic cosmic radiation with difference 
thicknesses of passive aluminum shielding. (Top curve: solar minimum; Bottom curve: 
solar maximum) 
 
Passive shielding can be quite effective for particles with energies < 1 GeV/nucleon. 
However, for higher energy particles, nuclear interactions with the shielding material 
produce secondary particles which can actually be more numerous and detrimental to 
astronaut health than the incident radiation. Figure 1.2 shows that the first ~10 cm. of 
aluminum partially reduces the radiation, but doubling the thickness produces almost no 
more net reduction. If the thickness is increased sufficiently, of course, all radiation can 
be absorbed, but the resulting mass will be impractically large. 
 
The magnetic shield described in this report will bend away cosmic ray protons with 
kinetic energies below ~2 GeV, depending on field strength and geometry. (Optimizing 
the limit through an investigation of the scaling characteristics of the superconducting 
magnet systems is one of the primary research areas for this study.) Although cosmic rays 
above some critical energy will certainly penetrate the shield, they pose a smaller danger, 
since although they have higher kinetic energy, they lose energy at a lower rate than 
lower energy cosmic rays. Above a kinetic energy of 4 GeV/nucleon, cosmic rays lose 
energy at a constant linear rate; so, for example, an alpha particle (charge 2) will lose 
~120 MeV passing through a human body whether its total energy is 10 or 100 
GeV/nucleon.  Below about 1 GeV/nucleon, however, cosmic ray energy loss goes like 
1/v2; so an alpha particle with 500 MeV/nucleon will deposit all of its energy in the 
human body, a total of 2 GeV, or sixteen times as much as a 10-100 GeV/nucleon alpha. 
This is one reason why the 2-4 GeV/nucleon energy range is critical for our study. 
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Passive shielding only makes the problem worse for high-energy cosmic rays, which 
interact in the shielding to create secondary particles with a higher “quality factor” (i.e. 
more physiologically damaging) than the primary radiation. Using hydrogen as a passive 
shield reduces but does not eliminate secondary shower generation. This fundamental 
difference between magnetic and passive shielding is inherent in the physics of particle 
interactions. It represents a fundamental advantage of magnetic shielding over and above 
the potential reduction in shielding mass. In other words, higher energy cosmic rays 
which penetrate the magnetic shield will do less damage than the secondary particles 
emerging from the interaction of those same higher energy cosmic rays with passive, 
absorption shielding.  
 
The Principal Investigator for this study acknowledges useful conversations with Dr. 
Frank Cucinotta of the Johnson Space Center’s radiation protection group. Dr. Cucinotta 
[private communication] explained the tremendous complexity in translating radiation 
spectra into actual physiological dosages. Following his advise, we concentrated our 
efforts on predicting the modification of the radiation spectrum penetrating the magnetic 
shield rather than attempting precise dosage conversions on our own. Dr. Cucinotta’s 
group can take our spectra and use their specialized modeling software to transform these 
spectra into actual dosages. Dr. Cucinotta believes that a reasonable mass of passive 
shielding can protect astronauts up to energies of ~1 GeV/nucleon. The critical energy 
range is ~2-4 GeV, where the effectiveness of both passive and magnetic shielding falls 
off rapidly. The results we present in the following sections will concentrate on 
examining the reduction in radiation in this critical energy range. 
 
1.3 Basic Principles of Magnetic Shielding 
 
Magnetic shielding has been the subject of several previous studies [Landis, 1991; 
Townsend, 2000]. We are studying this complex engineering problem on the basis of 
recent advances in technology and computational models. The following key points have 
to be taken into consideration for the theoretical studies and engineering design of a 
shielding system to protect astronauts from the cosmic rays: 
 
• Charged particles can be either absorbed in a relatively uncontrolled way by various 

materials or actively reflected by stationary electric and/or magnetic fields. 
 
• During the process of absorption, the composition and spectrum of the radiation 

changes. If absorption is not complete, the transformed radiation enters the habitable 
zone with effects potentially much worse than the original incident radiation. 
Secondary particles which were not present in the incoming radiation (e.g. neutrons) 
can be produced in the shielding material and enter the habitable zone. 

 
• Reflection does not change the composition of the radiation; no new particles are 

created. Magnetic and electrostatic reflections have somewhat different effects on the 
incoming particle spectrum. In both cases, reflection has more of an effect on lower 
energy particles, so it effectively hardens the spectrum of radiation entering the 
habitable zone. A magnetic field does no work on charged particles, so it does not 
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change the energy of the incoming particles; it just diverts them. Thus, at all energies, 
the radiation penetrating the habitable zone is never greater than the incident 
radiation. Electrostatic deceleration actually lowers the energy of incoming particles, 
so the overall effect on the spectrum is more complex, as incoming particles at high 
relativistic energies are characterized not only by different masses, but also ionization 
states and velocity vectors at the impact. 

 
No system can be purely reflective, since the mass of the reflecting system will interact 
with incoming particles. This is equivalent to partial shielding, which, as was stated 
above, can in some circumstances have deleterious effects. 
 
 
We now present the results of two studies of the effectiveness of magnetic shielding. The 
first, presented in section 2 (carried out primarily by Peter Fisher) uses simplified 
magnetic field models in order to give early indications of the performance of the system. 
The second, presented in section 3 (carried out primarily by Oleg Batishchev) uses a 
much more accurate calculation of the magnetic field for a given coil geometry. This 
work is still in progress. We present the current state of the results in order to show that 
there are some differences from the simplified field model calculations presented in 
section 2. We will continue to develop the more accurate field models in a full 3-
dimensional calculation if this research progresses to Phase II. 
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2. Preliminary study of magnetic shield for space radiation 
    (done primarily by Peter Fisher) 
 
Our initial study of the reduction in radiation exposure inside a magnetically shielded 
habitable volume assumed the conceptual design geometry as shown in Figure 2.1.The 
coils are assembled in a double-toroidal-solenoid configuration to repel particles coming 
from all directions and to create a sufficiently large inner habitat with vanishing magnetic 
field. (Note that although the indicated field magnetic strength in the figure is 5T, we 
actually did our initial calculations at higher fields, ~9T.) 
 

    
  
 
 
2.1 Magnetic shield design 
 
The magnetic shield works by deflecting the incident charged particle radiation in a 
magnetic field.  For a field   

r 
B , a particle of charge q moving with velocity   

r 
v  will be 

subject to the Lorentz force 
  

r 
F = q

r 
v ×

r 
B ( )/c = qvBsinθ /c where θ is the angle between the 

particle’s velocity and the magnetic field.  The Lorentz force always acts perpendicularly 
to the particle’s direction of motion, causing the particle to travel along a curve.  In the 
special case of a relativistic particle with Lorentz factor γ moving perpendicularly to a 
magnetic field, the trajectory will be circular with radius ρ = mγv /κB  where 
κ = 0.3GeV/T − m. 
 
The idea for magnetic shielding of a spacecraft relies on a toroidal magnetic field 
surrounding the habitable volume, Figure 2.1  Oval coils arranged circularly around the 
habitat create the field, which is oriented circularly around the axis of the habitat.  
Charged particles incident from outside the shield will then always have some component 
of their velocity perpendicular to the magnetic field and will thus be subject to the 
Lorentz force. 
 

Figure 2.1 – Proposed assembly 
of the magnetic coils forming 
active shield around habitat 
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As a start, we chose a magnetic field of 9 T (which is 90,000 G), which has been 
achieved in large magnets for accelerators (the Large Hadron Collider at CERN).  Studies 
indicate that the most damaging dosage in space comes from cosmic rays having energies 
below about 2-4 GeV/nucleon.  Using the equation above, we find a field thickness of 1.5 
to 3 meters is required for complete protection.  NASA requirements for the dimensions 
of a habitat for an interplanetary flight are a diameter of 7 m and a height of 7 m (116 m3) 
for a cylindrical habitat.  For our baseline study, using a field thickness of 1.5 m gives 
outer dimensions of 10 m diameter and 10 m height. 
 
2.2 Simulation method 
 
Our calculation is based on the Monte Carlo method: for each energy, we start particles 
just outside the outer surface of the shield with an isotropic velocity distribution.  The 
particles start randomly just outside the surface of the shield.  The trajectory is then 
calculated in approximately 0.5 cm steps using the Lorentz force law.  We count the total 
number of particles which traverse the magnetic field and enter the habitat, using 100,000 
trials for each energy.  The simulation is carried out with and without a magnetic field for 
each energy and the energy ratio: R = (number entering no field)/(number entering with 
field) gives the flux reduction factor.  R approximates the dose reduction factor to about 
20% and we treat them the same for the purposes of this preliminary study. 
We have run several different calculations: 

1. Baseline – 9 T uniform field with the dimensions given above 
2. Uniform field of 9.2 T with the dimensions given above. 
3. Uniform field of 9 T with a field thickness of 1.7 m.   
4. A somewhat more “realistic” field with radial dependence of the form 

  

r 
B = Bo ro /r( )ˆ ϕ  with ro chosen such that BL2 = B r( )

rin

rout

∫ rdr = 20.25T − m2.   

This case has a 50 cm radius zero field region at each end to account for the inner 
coils in an approximate way. 
 

This last case deserves some explanation: for a uniform field of thickness L, the bending 
is BL2.  For the coil arrangement shown in Fig. 2.1, the field will have an approximate 1/r 
dependence, and we take the case where we increase the magnetic field in order to have 
the same bending power.  
 
Once we have R(E), we can compute the reduced flux inside the habitat.  Φi = FiE

−2.7  
gives the flux for elemental species I with kinetic energy E per nucleon. The values for F 
are given in Table 2.1. The flux inside the habitat is then just Φi,inside (E) = Φi(E) /R(E). 
 
2.3 Results 
 
Figure 2.2 shows the flux reduction in protons for the baseline case.  All protons below 
about 2 GeV are completely rejected and 50% of 3 GeV protons are rejected.  The curves 
for heavier elements look similar with rejections somewhat lower owing the lower Z/A 
ratio. Table 2.1 gives the fractional contribution to the flux inside the habitat for each 
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element. Comparing the flux with and without the magnetic field, we find the total flux, 
which is approximately the total dose, is reduced by a factor of 10.7.  
 
Turning next to the radially dependent, more “realistic” B-field case described above, 
Figure 2.2 also shows a comparison for the reduction factor between the “realistic” and 
ideal cases.  Adding up the dose gives a reduction of 3.3.  We note the “realistic” case 
underestimates the reduction factor, as it does not include the fringe fields from the coils.  
Also, the 50 cm hole will contain the coils and will most likely absorb all the particles 
entering.  
 

 
Figure 2.2 - Comparison of ideal case and realistic cases 

(2-4 GeV corresponds to 0.3-0.5 on the logarithmic scale.) 
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Next, we consider some changes in the design parameters. Figure 2.3 shows the ideal and 
realistic cases with 9 T and 9.2 T fields; the reduction factor increases to 11.1 for the 9.2 
T case, giving dR /dB =1.8 /T .  A 20% change in the field results in a 20% improvement 
in flux reduction. 

 
Figure 2.3 - Comparison of ideal and realistic cases with 9 T and 9.2 T fields. 

 
Finally, the calculation of the dose was carried out for a L=1.7 m field thickness, 
resulting in a reduction factor of 13.1 (Fig. 2.4).  This gives dR /dL =12 /m .  Thus, a 20% 
change in field thickness gives a 30% change in reduction factor. These two results 
follow from the bending power being proportional to BL2; for a given fractional increase, 
the bending power improves more if the field thickness increases than if the magnetic 
field increases. 
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Figure 2.4 - Comparison for the ideal case with 1.5 m and 1.7 m thick magnetic field regions. 

 
 
 
 
Figure 2.5 – 2.7 show comparisons of the flux with and without the magnetic field for all 
species of cosmic radiation from protons through Z=27 (cobalt). The transmitted spectra 
can be added, using the abundance factors given in Table 2.1, to give an overall dosage. 
The radiation in free space is ~90 rem/yr, with a total dose of 300 rem considered lethal.  
Our baseline design would reduce the dose to ~9 rem/yr, and the dose for a three-year 
mission would be below 10% of the lethal dose.  
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Figure 2.5 - Comparison of spectrum in the habitat with and without the ideal case 
magnetic field for elements Z=1-9. 
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Figure 2.6 - Comparison of spectrum in the habitat with and without the ideal case 
magnetic field for elements Z=10-18. 
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Figure 2.7 - Comparison of spectrum in the habitat with and without the ideal case 

magnetic field for elements Z=19-27. 
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Table 2.1 - Abundance and contribution to dose inside habitat for ideal case for each element. 
 
 
2.4 Discussion of results 
 
The effectiveness of the magnetic shielding in the modeling shown above decreases 
rapidly as the particle energy increases from 2 to 4 GeV/nucleon. Moreover, the 
effectiveness of the “ideal” and “realistic” magnetic field configurations (Fig. 2.2) differ 
considerably all the way up to 10 GeV/nucleon. This critical dependence on the detailed 
geometry of the magnetic field led us to initiate a more accurate calculation of the 
magnetic field, carried out primarily by Oleg Batishchev and described in the next 
section. 
 
(Note that this work was originally written up independently. While we have attempted to 
integrate it seamlessly into the overall report, time constraints have not allowed us to do 
this completely. As a result, there is some overlap in the initial problem description in 
this section with what has been given earlier. Hopefully this will not cause confusion.)

Z M F %dose Z M F %dose 
1 1 485 0.12 15 31 0.005 0.19 
2 4 26 0.30 16 32 0.03 1.4 
3 7 0.121 0.0084 17 35.45 0.005 0.32 
4 9 0.087 0.018 18 40 0.009 00.77 
5 10.8 0.192 0.095 19 39 0.006 0.58 
6 12 0.986 0.91 20 40 0.018 2.1 
7 14 0.218 0.37 21 45 0.003 0.45 
8 16 1 2.9 22 47.867 0.01 1.8 
9 19 0.015 0.076 23 51 0.005 1.1 
10 20 0.152 1.1 24 52 0.011 2.9 
11 23 0.026 0.28 25 55 0.009 2.8 
12 24.3 0.197 2.9 26 55.485 0.110 39.6 
13 27 0.031 0.66 27 59 0.001 1.9 
14 28 0.163 4.5 28 58.69 0.007 15.4 
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3. Accurate grid calculation of magnetic field configuration for in-space 
    shielding of humans from high-energy cosmic rays 
    (done primarily by Oleg Batishchev) 
 
3.1 Purpose of study 
 
This work consisted of developing a detailed transfer model of cosmic radiation through 
a combined region containing matter and a strong magnetic field. The goal of this 
calculation is to model the radiation penetrating the habitable volume. (Physiological 
effects of the penetrating radiation must be considered separately and will be based on the 
comparison of the total dose calculations with existing NASA biomedical data and 
approved standard radiation requirements.) 
 
The model will at first be used to optimize the magnetic field configuration around the 
habitable volume, with no special consideration being given to the mass of the system 
producing the magnetic field. Since this model will represent as accurate a depiction of 
the magnetic field as possible, it will form the basis for further engineering studies of the 
magnetic shielding system. 
 
Detailed space systems engineering design work will eventually produce a believable 
mass model associated with the assumed magnetic field. Elements to be considered are: 
 

• Magnet Cores 
• Windings 
• Liquid He 
• Mechanical Support for Magnets 
• Cooling System (by assumption the power, propulsion and radiator systems are 

located away from habitable volume.) 
 
With the resulting mass distribution, new radiation transfer calculations will yield a more 
accurate particle spectrum penetrating the habitable volume for the given magnetic 
configuration. This will allow an iterative process in which the magnetic field distribution 
is altered to minimize the penetrating radiation. 
 
The engineering analysis has to be able to calculate the changing mass distribution as the 
field configuration is re-optimized to minimize the penetrating radiation; but as the 
iterations proceed, it also has to predict more accurately the real mass associated with the 
magnetic shielding system. The systems necessary for field maintenance (power, 
radiators, etc.) are located far enough away from the habitable volume so as not to have 
been taken into account for the scattering calculations. They will, however, have to be 
taken into account for the total mass budget. 
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3.2 Magnetic shielding fundamentals 
 
Charge articles in a strong magnetic field are magnetized and follow adiabatic trajectories 
under the Lorentz force, which are strictly normal to the velocity vector in the absence of 
other fields, e.g. electric field: 
 

     
c

Bvq 
dt
pd

rrr
×

=      (1) 

 
Here momentum and velocity are linked through the equality vγmp rr

0=  with the 

relativistic factor defined as 22
0

2

1
cm

p
+=γ  ; c is the speed of light in vacuum, and 0m  is 

the particle’s mass at rest. A gyro-frequency of a particle placed in a uniform magnetic 

field is given by 
c0γ

ω
m
qB

H = , with the corresponding gyro-radius:  

qB
pc

qB
cvm

ω
vr
H

H ===
γ0     (2) 

For the ultra-relativistic particles with high energies 2
00 cmEE ≡>>  the product of 

momentum times speed of light becomes increasingly close to the actual energy, 
 EcmEpc →−= 42

0
2 ,     (3) 

and, therefore, 
qB
ErH → . In the commonly used units – GeV for energy E, Tesla for 

magnetic field, and if we measure dimensionless charge in units of electron charge q/e=n, 

the Larmor radius in meters reads as 
)(
)(336.3)(

TnB
GeVEmrH ≈ .  

 
Finally, we arrive at a simple estimate of the required “magnetic thickness” of a shield 
stretching from point A to B that will reflect back all (ultra-relativistic and not) particles 
with energies equal or smaller than E regardless of their charge number: 
 

   ∆><=< ∫ BmdlTBGeVE
B

A
3.0)( )( 3.0)(    (4) 

 
where we integrate along line A-B, ∆ is the width of the magnetic layer carrying mean 
magnetic induction >< B . Of course, particles which are not ultra-relativistic will 
require weaker magnetic insulation. However, quantitative calculations of required 
thickness have to take into account processes that can change the speed of particles (not 
just rotate the velocity vector) and the entire energy spectrum of the population. This has 
to be done numerically, as purely theoretical analysis is limited due to the complexity of 
the system. 
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We started with the conceptual design of the targeted magnetic shield as presented in 
Fig. 2.1. The coils are assembled in a double-toroidal-solenoid configuration to repel 
particles coming from all directions and to create a sufficiently large inner habitat with 
vanishing magnetic field. 
    
By choosing TB  75 −>=< and coil width m 21−=∆  we can estimate that the cosmic 
ray spectrum can be significantly reduced at energies up to GeVE  2.45.1 −< . These 
numbers imply a 70-90% reduction of the cosmic ray flux (see Fig. 1) within the habitat. 
To reduce penetrating flux to 1% of the nominal intensity one has to achieve magnetic 
thickness on the order of ~30 Tm. 
 
Next, we can estimate currents I  in the coils and magnetic forces F acting on them. Let 
us select the target number of coils to be K=16, and the large radius of the torus R~4-5m. 
 
A mean field inside a toroidal solenoid of major radius R is given by the expression: 
 

    
)(
)(102

2
70

mR
AKI

R
NI

B −×==
π

µ
    (5) 

 
By substituting input parameters, we estimate that to achieve 30tm the required current 
has to be substantial, MAI 10≈ . The forces acting on coils could be estimated as follows. 
The magnetic force per unit length acting on two parallel currents I separated by distance 
∆  is given by formula: 
 

   
)(
)(102

2
)(

2
7

2
01

m
AII

NmF
∆

×=
∆

= −−

π
µ

    (6) 

 
which gives a linear force estimate on the order of 1710~ −NmF  for the selected extreme 
physical/geometrical parameters.  Note that the force drops rapidly as 2~ −KF , when the 
number of coils is increased. 
 
Naturally, the analysis presented above is accurate only to within roughly an order of 
magnitude. Actual fields are non-uniform; they peak near the coils and drop in the inner 
spaces. Moreover, the field has the strongest gradients inside the superconducting coils 
themselves. Because of the quite complex geometry of the system, quantitative analytical 
calculations of the magnetic fields, not to mention net shielding effect, are impossible. 
Therefore, computational models addressing relevant issues are being presently 
developed.  
 
3.3 Detailed magnetic field calculations 
 
There are several viable ways of calculating stationary magnetic fields created by a fixed, 
prescribed current distribution )(rj rr

: 
i) solving the Poisson equation for the vector-potential: jA

rr
=∇ 2 ,  AB

rr
×∇= ; 



PI: J.Hoffman; Co-PI: P.Fisher; Researcher: O.Batishchev 

NIAC Phase I Final Report 20

ii) solving the set of Maxwell equations with zero initial EM-fields and currents, but 

0)(
≠

dt
rjd rr

 until the currents are matched, and a steady-state regime is achieved; 

 
iii) direct calculation of the static magnetic field by using the Biot-Savart Law. 
 
The first method is known to produce the smoothest fields. But it requires a spatial mesh, 
which is true for the second method as well. If the mesh is structured or uniform, both 
methods achieve poor accuracy in the coil vicinity, where the gradients are the highest. 
The only possibility to overcome this problem is to use non-uniform meshes. In general it 
leads to the utilization of the so-called unstructured grids and corresponding methods, 
characterized with a high level of numerical complexity. 
 
 
3.3.1 Solving the magneto-static equation in 2D on unstructured meshes 
 
In this section, we present as an example an application of the unstructured, adaptive non-
uniform mesh method (Batishchev, et. al., 1999; 2003) to the problem of magnetic field 
calculation. Presently the method is developed for 2 dimensions only. Extension of the 
method to 3D will be proposed for Phase II research, as it requires major 
method/software development. However, when developed, it will give an unprecedented 
level of computational accuracy and flexibility from the geometrical standpoint.  
 
The following Fig. 3.1 represents currents in 4 coils, mimicking 2D cross-section of the 
toroidal system shown in Fig. 2.1. All the dimensions are given in meters, while the 
equivalent current is set to 10 MA  

 
 
 

The magnetic field is strictly solenoidal in 2D, as 0≡
dz
d  making coil currents equivalent 

to current sheets. Indeed, the calculated magnetic fields happen to be uniform within each 
of the coils, as could be seen from the following Fig. 3.2.  

Figure 3.1 – Contours of the x- and y- components of currents in the superconducting coils 



PI: J.Hoffman; Co-PI: P.Fisher; Researcher: O.Batishchev 

NIAC Phase I Final Report 21

 
 
In the calculations presented here, we have assumed that coils have finite widths on the 
order of several centimeters. Therefore, the computational grid is finer in the coil vicinity, 
as automatically enforced by the preset accuracy condition. As an illustration, a particular 
section of the simulation domain was magnified and is presented in Fig. 3.3 below. One 
can see that the computational grid conforms to current density. 

 
Figure 3.3 – Zoomed portion of the domain showing non-uniform grid conformed to j 
 
With the adaptive 3D grid modeling being still under consideration for the future, we are 
left with the only option - direct magnetic field summation through the Biot-Savart Law. 
The corresponding procedure is described in the next sub-section. 
 
3.3.2 Direct calculation of magnetic field by current summation 
 
To calculate particle trajectories with this technique, a spatial mesh is not required, unless 
some Eulerian quantities have to be evaluated in the entire space, e.g. densities of the 
species, radiation fluxes, etc. However, direct summation is a computationally demanding 

Figure 3.2 – Contours of the 
calculated magnetic field 

created by a system of 4 coils. 
Dark region at the bottom 

resembles space craft, to which 
the habitat is attached. 
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task, as it requires multiple summations over elementary currents. For this reason, we 
presently are calculating 3D magnetic fields on a structured cubic grid. Note that the very 
similar procedure could be (and will be) applied in case of the 3D adaptive mesh 
approach, which is more accurate, but has not yet been developed. 
 
In the direct summation method arbitrarily distributed current is decomposed into a big 
number of thin linear segments. To each of these straight ∫= ldl

rr
segments we apply the 

Biot-Savart law: 

    ∫∫
×

==∆
ii

i r
rldIBdrB 3

0

4
)(

rr
rrr

π
µ

   (7) 

 
This integral is easily evaluated as shown in planar Fig. 3.4. The magnetic field is normal 
to the current-radius-vector plane, so the vector product in the numerator reduces to a 
product θdl r sin , where d is a distance from the line (AB) to point S, located at radius-
vector sr

r . By using the geometrical relations θctgdl   −=  and θrd sin= , the integral 
contribution (5) from the i-th segment could be calculated as: 
 

    i
BA

isi b
d

IrB
rrr

 coscos
4

)( 0 θθ
π

µ −
=∆ ,   (8) 

 
where ib

r
 is a unit vector in direction of magnetic field increment iB

r
∆ . 

 

S

I i

dl

θ

A

Bd

 
Expression (6) has to be evaluated for every spatial grid node s with respect to every 
current segment i=1,…,M to obtain a local value of magnetic field: 

    ∑
=

∆=
M

i
sis rBrB

1
)()( rrrr

     (9) 

 
If the number of nodes is K, s=1,..,K , the total number of operations (9) is proportional 
to K×M. The product could be large, but in any case, calculation of a static magnetic field 
has to be performed just once for a given configuration of the coils. 

Figure 3.4 – Schematics of the 
calculation of an integral 

contribution to the magnetic 
field from a segment [AB]. 
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The details of actual computer realization of this approach are a bit more complicated. 
For instance, all coordinates are 3-dimenstional, not 2 as shown in Fig. 3.4. The actual 
plane, holding all three points - S, A, B, as well as the normal distance d and cosines, has 
to be determined for each of the KM grid point – current segment pairs.  
 
3.3.3 Numerical algorithm for ∆B calculation in 3D 
 
To calculate ∆B one has to evaluate all terms in expression (8). The easiest way is to use 
vector algebra. Fig. 3.5 serves as illustration to the numerical procedure. 

NθΒ

A
B

i

θΑ

S

→

→→
→

→ab
an

as
bs

Z

X

Y

d

b

→

→

 
What is known – coordinates of 3 key points: A, B and S, defined by radius vectors ar

r ,  

br
r  and cr

r , respectively. The rest has to be derived in an efficient way.  

The first step is calculating vectors ab rrab rr
−=

→

, as rras rr
−=

→

 and bs rrbs rr
−=

→

. 
Second step is finding cosines of angles Aθ  and Bθ  (Fig. 7) through scalar product, e.g. 

))(())(())(( abasabasabas zzzzyyyyxxxxabas −−+−−+−−=•
→→

, as: 

→→

→→

•
=

abas

abas
A

 

  cosθ    ,     →→

→→

•
=

abbs

abbs
B

 

  cosθ    (10) 

where the denominator uses the vector modulus,  e.g. 
→→→

•= ababab   . 
Next we can find coordinates of point N, the start of segment NS, normal to line (AB).  

→

→
→→→

==
ab

abasianan     cos   Aθ
r

    (11) 

where i
r

 is a unit vector in the direction of current. 

Figure 3.5 – Chart to illustrate 
numerical procedure for calculating 
magnetic field at point S created by 

segment [AB] 
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Now one can obtain required distance d (see Figs. 3.4 and 3.5) as: 

→→

−== anasdd
r

     (12) 

The last step is using the now-known vectors i
r

 and d
r

 to construct unit vector b
r

, 
pointing  in the direction of magnetic quanta B

r
∆ . To find it, a vector product is used: 

→→

×= abdB  
r

  ,   
B
Bb r

r
r

=      (13) 

Final result is obtained combining operations (10) through (13) together. 
 
3.3.4 Single coil decomposition into linear segments 
 
For magnetic field calculations we use 
the following standard units: meter for 
length, Ampere for currents, and Tesla 
for magnetic field strength.  
We assume that a single superconducting 
coil has a simple configuration as shown 
in Fig. 3.6a. As follows form this figure, 
the coil is basically a combination of two 
half-circular pieces of the same radius R, 
connected together with two straight 
segments of length L to form a loop.  The 
same constant current I passes through 
every cross-section of the coil, which is 
assumed to be fixed as well, see Fig. 3.6b. 
 

      

Ii

Ij

.
σj

 
   
 
 
 
 

Figure 3.6b – Scheme of the coil currents decomposition into segments with sufficiently 
small cross-sections σj   and currents Ij, depending on the shape of the coil. 

Figure 3.6a – Geometry 
of a coil used in analysis 

I
L

R

R

o2

o1
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The decomposition of superconducting coil currents into the straight current segments 
depends on the shape of the coils and on the desired accuracy. Two standard examples of 
subdivision of two linear currents with rectangular and circular cross-sections are 
presented in Fig. 3.6b. Partial static current Ij is calculated as directly proportional to the 
cross-section σj of this segment. Curved stretches of the magnetic coil are approximated 
by dividing them into a finite number of linear segments. 
 
3.3.5 Calculation of the magnetic field for a system of toroidal coils 
 
The proposed assembly of magnetic coils, presented in Fig. 2.1, is a combination of sub-
coils with toroidal geometry. The larger coil assembly creates a sidelong shield. Due to 
the azimuthal symmetry a several meter-sized habitat cannot be protected against the 
radiation coming axially, and secondary shielding is required. One of the possibilities is 
to use a magnetic plug with a toroidal shape as well.  
 
For magnetic field calculations we again use the following dimensional units: meter for 
length, Ampere for currents, and Tesla for magnetic field strength.  

 
 

 
 
 

Figure 3.7 – Top: K=16 magnetic coil assembly, and corresponding 
magnetic field; for comparison a magnetic field for K=64 and K=8 is 

shown at the bottom with the coil currents accordingly scaled. 
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The numerical code can combine several 
toroidal configurations, as shown in Fig. 
3.7. For instance, it can calculate the B-
field distribution for the coil assembly 
shown in Fig. 2.1. An example of a 
system with 16-coil main magnet and a 8-
coil magnetic plug is presented in Fig. 
3.8. 
 
After the magnetic fields are obtained we 
can integrate particle trajectories in these 
fields to calculate radiation flux 
distribution inside the system. There are 
several approaches to the orbit 
integration. We have developed the 
following analytical method, which is 
accurate and stable.   
 
 
3.4 Analytical relativistic 3D3V orbit integrator for the E=0 case 
 
In the general 3D3V relativistic case, the trajectory of any macro-particle (omitting 
species index) reads in the natural units as:  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

×
+=

+
==

)( 
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BvEq
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 ,    (14) 

vmp rr γ0=  is the relativistic momentum vγmp rr
0= , where 0m  is the mass at rest, and the 

square of the relativistic factor 22
0

2

22

2
2 1

cm
p

vc
cγ +=
−

= . 

We are using semi-analytical procedure to integrate (14), which unlike a traditional 
finite-difference approach, guarantees that the particle will stay on a correct helical orbit 
for an arbitrary number of time steps. Importantly, the analytical algorithm is 
unconditionally stable, conservative, accurate, and has correct asymptotics. 
 
In the case of a vanishing electric field Eq. (14) can be integrated analytically in the 
relativistic case of interest. First, the second equation reduces to: 

c
Bvq 

dt
pd

rrr
×

=      (15) 

By calculating a scalar product by vr , one proves that the amplitude of momentum (and 
velocity) does not change in time: 

0
)(2

1 2

0

=
×

•==•
c

Bvvq 
dt

dp
vmdt

pdv
rr

v
r

r
r

γ
   (16) 

Figure 3.8 – Magnetic field of a system 
with K=16 coils and a K=8 magnetic 

plug at one end. 
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Basically, this means that the trajectory of a particle can be viewed as classical with 
scaled mass γmm 0= . The problem could be formulated as follows: from the known 
phase coordinates of a particle { }11,vr rr  at the time t  calculate new coordinates{ }22 ,vr rr  at 
the next time moment tt ∆+  assuming that the magnetic field is fixed.  
To simplify orbit integration, we split the particle’s 3D3V trajectory into two independent 
motions – along the direction of the magnetic field, and in the plane normal to B

r
. The 

following sketch illustrates the corresponding numerical procedure. 
The parallel and perpendicular projections of the initial velocity 1vr  with respect to the 
direction of the field vector B

r
 are obtained using the scalar product: 

 

  
⎪⎩

⎪
⎨
⎧

=−=

==

nvbvvv

bvbbvv
nbn

bb

rrrr

rrrrr

  

  )(

111

111 ,    (17) 

where BBb /
rr

≡  is a unit vector in the direction of the magnetic field. Another unit vector 
nn vvn 11 /rr

=  is normal to b
r

. These two vectors, along with a third unit vector (a vector-
product, of the two, nbu rrr

×= ) form a right-handed coordinate system shown in Fig. 3.9. 
The “parallel” projection of velocity does not change, as  
 

0111 =
×

=
×

=
c

Bbvq 
c

Bvq 
dt
pd bbb

rrrrr

    (18) 

which means that the particle moves uniformly in b -direction. In the plane ( )un rr  the 
particle gyrates in a perfect circle of radius Hr  given by Eq. (2). The instantaneous vector 
ur  points exactly towards the center o  of a planar gyro-orbit (see Fig. 3.9).  
During a single time step, τ , a particle makes a rotation through angle ϕ  in the 
plane ( )un rr  as shown in Fig. 3.9:  

 
222

00

 22
pcm

Bq
cm

qB
+

==
τπ

γ
τπϕ     (19) 

The corresponding rotational transformation is given by  
 

    
⎪⎩

⎪
⎨
⎧

=

=

ϕ

ϕ

sin

cos

12

12
nu

nn

vv

vv
     (20a) 

 
where we have employed the fact that 01 ≡uv  for the coordinate system construction. 
Thus, the new particle velocities after rotation in the magnetic field are: 
 
   uvnvbvv nnb rrrr  sin   cos  1112 ϕϕ ++=     (20b) 



PI: J.Hoffman; Co-PI: P.Fisher; Researcher: O.Batishchev 

NIAC Phase I Final Report 28

z

x

y

B

r2
nu

v1
b

ϕ

b

n

u

v2
nu

v1

v1
n

orH

r1

 
 
 
Next, we have to calculate new spatial position of a particle. The coordinate of the 
projection on plane ( )un rr  of the center  o  of the helical trajectory (Fig. 3.9) is: 
 

urrr H
rrr

+= 10      (21) 
 

Note that in Eq. (21) we assume that the gyro-radius has a sign depending on that of the 
particle charge. The ( )un rr  projection of the velocity is always tangential to the gyro-orbit. 
Therefore, it is calculated similar to Eqs. (20ab) as: 
 

urnrrr HH
nu rrrr  sin  cos02 ϕϕ −+=     (22) 

 
Finally, the new particle coordinate is calculated as a superposition of uniform parallel 
and circular perpendicular to the magnetic field motions: 
 
     nub rbvr 212

rrr
+∆=     (23) 

 
Obviously, the particle trajectory is and exact helix, which becomes a straight line in the  

0→B
r

 limit, and a perfect circle when 01 →bv . 
 
 
 

Figure 3.9 - Vectors B-field and velocity, and its parallel and perpendicular 
projections with respect to the magnetic fields and two coordinate systems. 
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3.5 Monte-Carlo calculations of radiation flux reduction 
 
We have traced millions of trajectories of the particles with energies from 0 to 100 GeV 
that have energy distributions as presented ion Fig. 3.10. Protons and alpha-particles in 
this energy range are responsible for the majority of the cosmic ray flux. 
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Figure 3.10 – Energy spectrum of cosmic rays as given in the [Particle Data Group, 2004] 
 
The simulation domain is shown in Fig. 3.11. Uniformly along a spherical surface that 
surrounds the magnetic coil assembly, we continuously simulate impinging particles with 
the required energy distribution. These particles travel inside the magnetic field domain 
until they leave it a later moment. The contribution of all particles to the radiative flux 
and density is periodically accumulated over a long period of time until satisfactory 
statistical information is gathered. This requires typically 10-100 events per spatial cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 – The spherical simulation domain with particle injection from the boundary 
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The following randomization procedure assuring that we match the experimental cosmic 
ray fluxes is used. The flux is assumed to be isotropic in space, as is the distribution 
function of particles, )()( vfvf =

r , which defines the number of particles on the 
elementary phase space volume as dvvvfvdvfdN 24)()( π==

rr . What is actually 
presented in Fig. 3.10 is the directional particle flux ∫∫ =Γ+ vdvfvd x

rr)( , which is equal 
to the flux collected by a plane surface in a second, divided by the solid angle π2 . 
For a given kinetic energy 

 2
0

42
0

22 cmcmcpE −+=      (24) 
(with corresponding velocity v ) the isotropic distribution is generated using two normal 
random numbers ] [1,02,1 ⊂ξ , which define a random position on a sphere as follows: 
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here θµ cos= , and ],0[ πθ ∈  and ]2,0[ πϕ ∈  are the spherical coordinates{ }θϕ ,,v .  
But to proceed with Eq. (25) we have to convert energy dependence of the fluxes to 
velocity-dependence. In the spherical coordinates a directional particle flux is: 

   dvvvfdvdvfvdv )( )(2
1

0
πµµπ ==Γ ∫+     (26) 

which when divided by the half-space solid angle gives )(5.0)( vvfv =Γ+ , in accord with 
the fact that the average projection of a velocity is half of its amplitude. Thus, we have: 
 

dEEfEvvdNvd )()(5.05.0)( ==Γ+     (27) 
 

We use the following dimensional units in the calculations: proton mass pm , electron 
charge e , speed of light in vacuum c , and GeVE 1=  for particle energy. Hence, the unit 
for momentum is cmp , and for time cm /1 . The dimensionless relation between 
momentum (velocity) and energy, as well as expressions for gyro-radius Eq. (2) and 
precession angle Eq. (19) is: 
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The whole interval of energies of interest, GeVE 1000 −= , is divided into ~30 bins with 
GeVE 51.0~ −∆  per bin. The total flux carried by particles emitted during a time step τ  

from a unit area on the boundary surface (Fig. 3.11) for a single bin is: 
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ητ KEvNEvE ><=∆><=∆Γ=∆Γ ++ )(5.0)(5.0   (28) 

 
where >< )(Ev  is the mean velocity within the segment, and K  is the number of test 
particles for the bin. Usually this number is fixed for all bins to allow equal relative 
statistical accuracy. From Eq. (28) we can calculate the weight of a single particle to be: 
 

KEv
E

)(
2 τη ∆Γ

=
+

     (29) 

 
When calculating the actual flux intercepted by a control surface of unit area, the ratio  
 

τ

η
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E
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i
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= +

∑
     (30) 

 
will give a factor of radiation reduction with respect to the background level.  
 
The results of modeling show that cutting off 95% of particles with GeVE 4< is 
achieved with <BL>~10Tm. To reduce a radiation flux to 5% of its background value a 
magnetic field rigidity on the order of 25Tm will be required.  
 
In the following Figs. 3.12a and 3.12b we present results for the 2-magnetic plug 
configuration, similar to one shown in Fig. 3.11, but with double the number of coils in 
each group. The three sets of runs have been performed for <BL> ~5, 10, and 25 Tm.  
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Figure 3.12a – The energy spectrum of protons in the center of the 6m×6m habitat 
for different various magnetic field rigidities. The left figure has a logarithmic 

ordinate, while the right one has a linear ordinate. 
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3.6 Discussion of Results 
 
Even with <BL> at the lowest value of 5 Tm, significant particle flux reduction is 
produced in the 4-5 GeV/nucleon energy range, indicating the effectiveness of magnetic 
shielding for protons and alpha particles, and by extrapolation for heavier particles as 
well. As mentioned above, we would like to extend these calculations and carry out a full 
3-dimensional grid calculation, but we have confidence that the Biot-Savart summation 
method for the magnetic field gives sufficient accuracy to provide confidence in the 
results presented here. 
 
4. Design considerations for a real superconducting magnetic shield system 

 
Given the encouraging results shown above, we now look briefly at the engineering 
challenges that must be faced if a real superconducting magnetic shield is to be built. As 
noted in our proposal, the bulk of the engineering analysis was planned to be performed 
in Phase II. 
 
A practical magnetic shield will need a coil system with mechanical support as well as 
control and cooling systems.  Assessing the practicality of the system we have analyzed 
above requires some idea of the weight, power consumption and amount of helium 
coolant.  The stored energy and internal mechanical forces also need assessment.  For this 
study, we scale from the AMS cryomagnet, currently under construction at Space 
Cryomagnetics in Cullum, England. [AMS Collaboration, 2004] 

Figure 3.12b – The energy spectrum of alpha-particles penetrating through the 
16-coil magnetic shield with <BL>=5, 10 and 25Tm. The left figure has a 

logarithmic ordinate, while the right one has a linear ordinate. 
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The AMS cryomagnet has the following characteristics: 
 

• A central field of 0.9 T 
• A bending power 0.8 Tm2 is over a volume of 0.7m3. 
• The heat load is about 10 W 
• 2500 l (312 kg) of liquid helium will be carried. 
• 5.5 MJ is stored in the magnetic field. 
• A coil mass of roughly 1000 kg and a total mass of roughly 2357 kg. 
• A power consumption of 700 W to power four cryocoolers 

 
Based on scaling, we can make some rough estimates of the characteristics of the 
magnetic shield we have described above.  We start with the weight: assuming a density 
of 5 g/cm3 for the coil conductor, the total mass of the coils will be 244 tons.  For the 
AMS cryomagnet, the coils constitute 61% of the total mass of 2357 kg and applying 
factor gives a total mass of 395 tons for the magnetic shield. 
 
This estimate is grossly naïve: the forces between the coils are proportional to the square 
of the magnetic field and the strength of the support structure goes like the cross sectional 
area; the support structure would need to be much thicker.  Based on the analysis above, 
the scale size of the support increases by a linear factor L = 395t /2.3t3 = 5, so the cross 
sectional area of the support members increases like L2 = 25.  In order to support the 
increased magnetic field, the cross sectional area need to increase by a factor of 100, so 
an additional factor of four is required, so using this scaling gives a total mass of 1600 t. 
Using advanced materials with greater strength-to-weight ratios (such as carbon 
nanotube-based fibers) would reduce the required support mass. 
 
The total amount of helium required and the cooling power may be estimated in two 
ways.  First, if we assume the heat load comes from radiative transfer, the heat load 
would be roughly proportional the surface areas of the coils, giving a heat load of 2.4 kW 
for the magnetic shield.  Assuming the same factors apply, this translates to 75 tons of 
liquid helium for a three year mission and a cryocooler power requirement of 169 kW. 
The AMS cryomagnet cold mass is supported by sixteen straps which could cause heat to 
enter by conduction.  The amount of heat which enters is proportional to the cross 
sectional area of the straps, as is their support strength.  Thus, the heat load should be 
proportional to the coil mass, giving a heat load of 1.7 kW, which would require 52 t of 
liquid helium and 117 kW of cryocooler power. 
 
A challenge to any design will be the ability to dissipate power in the case of a quench.  
For AMS, the 5.5 MJ of stored energy may be dumped to the support structure which 
weighs about 1500 kg.  The temperature rise is about 30 C. For the magnetic shield, the 
total stored energy is 16 GJ which would require a dump mass of almost 5000 tons for 
the same temperature rise.  
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In summary, the magnetic shield will: 
 

• reduce the total radiation dose by a factor of at least three in a 200 m3 habitable 
volume 

• have a mass of between 400 and 1600 t 
• require 52-75 tons of liquid helium for  a three year mission 
• need 117-169 kW of power for cryocoolers 
• store 16 GJ of energy, requiring a dump mass of 5000 tons for a 30 C temperature 

increase 
 
5. Summary of calculations and further directions for research 
 
Clearly, the construction of the magnetic shield we have described constitutes a massive 
undertaking, and our study points out several challenges.  As a next step, a complete 
calculation of the dose reduction needs to be carried out, including interactions of the 
incident particles with the coils and support structure.  Secondary particles, neutrons in 
particular, could pose a serious background threat.  In our preliminary calculation, we 
made no comparison with passive shielding, and a detailed comparison must be made, 
preferably with the same code.  
 
Our design would effectively shield a crew from cosmic radiation during a three-year 
deep space voyage, and this motivated our choice of baseline parameters.  The design 
certainly could be optimized for weight reduction.  For example, the weight of the 
support structure scales very roughly with B2 and linearly with L.  Reducing the field by 
10% while increasing L by 7% would keep the same reduction while reducing the mass 
by 13%.  Further, one end of the habitat will be connected to the spacecraft services, so a 
coil system at that end will not be needed, reducing the mass by 20-25%.  Also, the 
number and geometry of the coils could be optimized, resulting in further savings. 
 
In doing this optimization, we propose to use the most realistic analytical model possible 
of the magnetic field configuration, so as to maintain confidence in our predictions. We 
plan to develop an advanced 3D3V kinetic model, which will allow accurate resolution of 
coils and structure by utilizing a non-uniform, unstructured grid. Next, some of the 
important processes such as the production of secondary particles via collisions of cosmic 
ray particles with structural elements will be included into the computational model. We 
will perform predictive calculations using data for realistic operational superconducting 
magnetic systems 
 
Finally, many of our arguments above are based on scaling laws motivated by simple 
physical ideas, but generally naïve.  A detailed study of the scaling of the various AMS 
systems to the size we propose needs to be undertaken. In summary, we have established 
the basic range of parameters of an example of a magnetic shield which would suffice for 
a Mars mission.  Further detailed study will determine the practicality of such a system. 
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6. Media Interest and Outreach 
 
6.1 External Interest in this Research 
It is apparent that many science writers look at NIAC announcements. Since the awarding 
of our Phase I study contract, we have had over a dozen requests for interviews about the 
work, leading to articles in newspapers, journals and the web. We reproduce one example 
below, [Universe Today, 18 November, 2004]: 
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The second page of the above article follows below: 
 
Chicago, IL. The first are solar flare protons, which would come in bursts following a solar flare 
event. The second are galactic cosmic rays, which, although not as lethal as solar flares, they 
would be a continuous background radiation to which the crew would be exposed. In an 
unshielded spacecraft, both types of radiation would result in significant health problems, or 
death, to the crew. The easiest way to avoid radiation is to absorb it, like wearing a lead apron 
when you get an X-ray at the dentist. The problem is that this type of shielding can often be very 
heavy, and mass is at a premium with our current space vehicles since they need to be launched 
from the Earth’s surface. Also, according to Hoffman, if you use just a little bit of shielding, you 
can actually make it worse, because the cosmic rays interact with the shielding and can create 
secondary charged particles, increasing the overall radiation dose. Hoffman foresees using a 
hybrid system that employs both a magnetic field and passive absorption. “That’s the way the 
Earth does it,” Hoffman explained, “and there’s no reason we shouldn’t be able to do that in 
space.” 
 
One of the most important conclusions to the second phase of this research will be to determine if 
using superconducting magnet technology is mass effective. “I have no doubt that if we build it 
big enough and strong enough, it will provide protection,” Hoffman said. “But if the mass of this 
conducting magnet system is greater than the mass just to use passive (absorbing) shielding, then 
why go to all that trouble?”. But that’s the challenge, and the reason for this study. “This is 
research,” Hoffman said. “I’m not partisan one way or the other; I just want to find out what’s the 
best way.” Assuming Hoffman and his team can demonstrate that superconducting magnetic 
shielding is mass effective, the next step would be doing the actual engineering of creating a large 
enough (albeit lightweight) system, in addition to the fine-tuning of maintaining magnets at ultra-
cold superconducting temperatures in space. The final step would be to integrate such a system 
into a Mars-bound spacecraft. None of these tasks are trivial. The examinations of maintaining 
the magnetic field strength and the near-absolute zero temperatures of this system in space is 
already occurring in an experiment that is scheduled to be launched to the International Space 
Station for a three-year stay. The Alpha Magnetic Spectrometer (AMS) will be attached to the 
outside of the station and search for different types of cosmic rays. It will employ a 
superconducting magnet to measure each particle’s momentum and the sign of its charge. Peter 
Fisher, a physics professor also from MIT works on the AMS experiment, and is cooperating with 
Hoffman on his research of superconducting magnets. A graduate student and a research scientist 
are also working with Hoffman. 
 
NIAC was created in 1998 to solicit revolutionary concepts from people and organizations 
outside the space agency that could advance NASA's missions. The winning concepts are chosen 
because they "push the limits of known science and technology," and “show relevance to the 
NASA mission,” according to NASA. These concepts are expected to take at least a decade to 
develop. 
 
Hoffman flew in space five times and became the first astronaut to log more than 1,000 hours on 
the space shuttle. On his fourth space flight, in 1993, Hoffman participated in the first Hubble 
Space Telescope servicing mission, an ambitious and historic mission that corrected the spherical 
aberration problem in the telescope's primary mirror. Hoffman left the astronaut program in 1997 
to become NASA’s European Representative at the US Embassy in Paris, and then went to MIT 
in 2001. Hoffman knows that to make a space mission possible, there’s a lot of idea development 
and hard engineering which precedes it. “When it comes to doing things in space, if you’re an 
astronaut, you go and do it with your own hands,” Hoffman said. “But you don’t fly in space 
forever, and I still would like to make a contribution.” Does he see his current research as 
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important as fixing the Hubble Space Telescope? “Well, not in the immediate sense,” he said. 
“But on the other hand, if we ever are going to have a human presence throughout the solar 
system we need to be able to live and work in regions where the charged particle environment is 
pretty severe. If we can’t find a way to protect ourselves from that, it will be a very limiting factor 
for the future of human exploration.” 
Written by Nancy Atkinson 
 
 
6.2 Presentation to the physics community 
 
In addition to the media interest described above, we want to present our NIAC research 
to the broader physics community to elicit their comments and interest. We presented the 
following poster at the meeting of the American Physical Society in Savannah in 
November, 2004. [Fisher, et. al. 2004]: 

 
The final results will be presented at the MIT-NASA Radiation Shielding Workshop, 
Cambridge, MA, 13-14 June, 2005. 
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